A dual-active-set algorithm for positive semi-definite quadratic programming
Boland, N.L.

Data: 1997
Resum: Because of the many important applications of quadratic programming, fast and efficient methods for solving quadratic programming problems are valued. Goldfarb and Idnani (1983) describe one such method. Well known to be efficient and numerically stable, the Goldfarb and Idnani method suffers only from the restriction that in its original form it cannot be applied to problems which are positive semi-definite rather than positive definite. In this paper, we present a generalization of the Goldfarb and Idnani method to the positive semi-definite case and prove finite termination of the generalized algorithm. In our generalization, we preserve the spirit of the Goldfarb and Idnani method, and extend their numerically stable implementation in a natural way. .
Llengua: Anglès.
Document: Article ; recerca ; article ; publishedVersion
Matèria: Quadratic programming ; Positive semi-definite ; Convex optimization ; Active-set method
Publicat a: Mathematical Programming, vol. 78 n. 1 (1997) p. 1-27, ISSN 0025-5610

27 p, 1.1 MB
 Accés restringit a la UAB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2006-03-13, darrera modificació el 2017-10-28

   Favorit i Compartir