Per citar aquest document:
Scopus: 4 cites, Web of Science: 4 cites,
Empirical and physical estimation of Canopy Water Content from CHRIS/PROBA data
Cernicharo, Jesus (Parc Científic Universitat de València. EOLAB)
Verger Ten, Aleixandre (Centre de Recerca Ecològica i Aplicacions Forestals)
Camacho, Fernando (Parc Científic Universitat de València. EOLAB)

Data: 2013
Resum: Efficient monitoring of Canopy Water Content (CWC) is a central feature in vegetation studies. The potential of hyperspectral high spatial resolution CHRIS/PROBA satellite data for the retrieval of CWC was here investigated using empirical and physical based approaches. Special attention was paid to the spectral band selection, inversion technique and training process. Performances were evaluated with ground measurements from the SEN3EXP field campaign over a range of crops. Results showed that the optimal band selection includes four spectral bands: one centered about 970 nm absorption feature which is sensible to Cw, and three bands in green, red and near infrared to estimate LAI and compensate from leaf- and canopy-level effects. A simple neural network with a single hidden layer of five tangent sigmoid transfer functions trained over PROSAIL radiative transfer simulations showed benefits in the retrieval performances compared with a look up table inversion approach (root mean square error of 0. 16 kg/m2 vs. 0. 22 kg/m2). The neural network inversion approach showed a good agreement and performances similar to an empirical up-scaling approach based on a multivariate iteratively re-weighted least squares algorithm, demonstrating the applicability of radiative transfer model inversion methods to CHRIS/PROBA for high spatial resolution monitoring of CWC.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: article ; recerca ; publishedVersion
Matèria: Canopy water content ; Model inversion ; Neural networks ; Look up tables ; Empirical up-scaling ; CHRIS/PROBA
Publicat a: Remote Sensing, Vol. 5 (2013) , p. 5265-5284, ISSN 2072-4292

DOI: 10.3390/rs5105265

20 p, 798.9 KB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > CREAF (Centre de Recerca Ecològica i d'Aplicacions Forestals)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2016-02-24, darrera modificació el 2016-06-30

   Favorit i Compartir