Limit Cycles for two families of cubic systems
Gasull, Armengol (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Prohens, Rafel (Universitat de les Illes Balears. Departament de Ciències Matemàtiques i Informàtica)

Data: 2012
Resum: In this paper we study the number of limit cycles of two families of cubic systems introduced in previous papers to model real phenomena. The first one is motivated by a model of star formation histories in giant spiral galaxies and the second one comes from a model of Volterra type. To prove our results we develop a new criterion on non-existence of periodic orbits and we extend a well-known criterion on uniqueness of limit cycles due to Kuang and Freedman. Both results allow to reduce the problem to the control of the sign of certain functions that are treated by algebraic tools. Moreover, in both cases, we prove that when the limit cycles exist they are non-algebraic.
Ajuts: Ministerio de Ciencia e Innovación MTM2008-03437
Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-410
Drets: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Document: Article
Matèria: Cubic system ; Kolmogorov system ; Limit cycle ; Bifurcation
Publicat a: Nonlinear Analysis : Theory, Methods and Applications, Vol. 75 (2012), p. 6402-6417, ISSN 0362-546X



Postprint
23 p, 517.3 KB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > GSD (Grup de sistemes dinàmics)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2016-05-06, darrera modificació el 2026-01-05



   Favorit i Compartir