Per citar aquest document: http://ddd.uab.cat/record/150683
Scopus: 8 cites, Web of Science: 6 cites,
Algebraic and analytical tools for the study of the period function
Garijo, Antoni (Universitat Rovira i Virgili. Departament d’Enginyeria Informàtica i Matemàtiques)
Villadelprat, Jordi (Universitat Rovira i Virgili. Departament d’Enginyeria Informàtica i Matemàtiques)

Data: 2014
Resum: In this paper we consider analytic planar differential systems having a first integral of the form H(x, y) = A(x) + B(x)y + C(x)y2 and an integrating factor κ(x) not depending on y. Our aim is to provide tools to study the period function of the centers of this type of differential system and to this end we prove three results. Theorem A gives a characterization of isochronicity, a criterion to bound the number of critical periods and a necessary condition for the period function to be monotone. Theorem B is intended for being applied in combination with Theorem A in an algebraic setting that we shall specify. Finally, Theorem C is devoted to study the number of critical periods bifurcating from the period annulus of an isochrone perturbed linearly inside a family of centers. Four different applications are given to illustrate these results.
Drets: Tots els drets reservats.
Llengua: Anglès
Document: article ; recerca ; preprint
Matèria: Bifurcations ; Center ; Critical period ; Period function
Publicat a: Journal of Differential Equations, Vol. 254 (2014) , p. 2464-2484, ISSN 0022-0396

DOI: 10.1016/j.jde.2014.05.044


18 p, 451.0 KB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > GSD (Grup de sistemes dinàmics)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2016-05-06, darrera modificació el 2017-02-27



   Favorit i Compartir