| Home > Articles > Published articles > Liouvillian and analytic integrability of the quadratic vector fields having an invariant ellipse |
| Date: | 2014 |
| Abstract: | We characterize the Liouvillian and analytic integrability of the quadratic polynomial vector fields in R2 having an invariant ellipse. More precisely, a quadratic system having an invariant ellipse can be written into the form ˙x = x2+y2-1+y(ax+by+c), ˙y = -x(ax+by+c), and the ellipse becomes x2+y2 = 1. We prove that (i) this quadratic system is analytic integrable if and only if a = 0; (ii) if x2 + y2 = 1 is a periodic orbit, then this quadratic system is Liouvillian integrable if and only if x2 + y2 = 1 is not a limit cycle; and (iii) if x2 + y2 = 1 is not a periodic orbit, then this quadratic system is Liouvilian integrable if and only if a = 0. |
| Grants: | Ministerio de Ciencia e Innovación MTM2008-03437 Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-410 |
| Note: | Agraïments: The second author is supported by AGAUR grant PIV-DGR-2010 and by FCT through CAMGDS, Lisbon. |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Liouvillian integrability ; Invariant ellipse ; Quadratic planar polynomial vector fields |
| Published in: | Acta Mathematica Sinica. English Series, Vol. 30 Núm. 3 (2014) , p. 453-466, ISSN 1439-7617 |
Postprint 15 p, 739.0 KB |