| Data: |
2005 |
| Resum: |
Our goal is to study Pascal-Sierpinski gaskets, which are certain fractal sets defined in terms of divisibility of entries in Pascal's triangle. The principal tool is a "carry rule" for the addition of the base-q representation of coordinates of points in the unit square. In the case that q = p is prime, we connect the carry rule to the power of p appearing in the prime factorization of binomialcoefficients. We use the carry rule to define a family of fractal subsets Bqr of the unit square, and we show that when q = p is prime, Bqr coincides with the Pascal-Sierpinski gasket corresponding to N = pr . We go on to describe Bqr as the limit of an iterated function system of "partial similarities", and we determine its Hausdorff dimension. We consider also the corresponding fractal sets in higher-dimensional Euclidean space. |
| Drets: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Llengua: |
Anglès |
| Document: |
Article ; recerca ; Versió publicada |
| Publicat a: |
Publicacions matemàtiques, V. 49 n. 2 (2005) p. 329-349, ISSN 2014-4350 |