Weighted estimates for dyadic paraproducts and -Haar multipliers with complexity
Moraes, Jean Carlo
Pereyra, Mara Cristina

Data: 2013
Resum: We extend the definitions of dyadic paraproduct and t-Haar multipliers to dyadic operators that depend on the complexity (m; n), for m and n natural numbers. We use the ideas developed by Nazarov and Volberg to prove that the weighted L2(w)-norm of a paraproduct with complexity (m; n), associated to a function b ∈ BMOd, depends linearly on the Ad/2-characteristic of the weight w, linearly on the BMOd-norm of b, and polynomially on the complexity. This argument provides a new proof of the linear bound for the dyadic paraproduct due to Beznosova. We also prove that the L2-norm of a t-Haar multiplier for any t ∈ R and weight w is a multiple of the square root of the Cd/2t-characteristic of w times the square root of the Ad/2-characteristic of w2t, and is polynomial in the complexity.
Resum: The first author was supported by fellowship CAPES/FULBRIGHT, BEX 2918-06/4.
Drets: Tots els drets reservats
Llengua: Anglès
Document: article ; recerca ; publishedVersion
Matèria: Operator-weighted inequalities ; Dyadic paraproduct ; Ap-weights ; Haar multipliers
Publicat a: Publicacions matemàtiques, Vol. 57, Núm. 2 (2013) , p. 265-294, ISSN 0214-1493

Adreça original: http://www.raco.cat/index.php/PublicacionsMatematiques/article/view/10.5565-PUBLMAT_57213_01
DOI: 10.5565/PUBLMAT_57213_01
DOI: 10.5565/287143

30 p, 486.2 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > Publicacions matemàtiques
Articles > Articles de recerca

 Registre creat el 2013-06-25, darrera modificació el 2017-10-15

   Favorit i Compartir