Potential maps, Hardy spaces, and tent spaces on special Lipschitz domains
Costabel, Martin
McIntosh, Alan
Taggart, Robert J.

Data: 2013
Resum: Suppose that Ω is the open region in ℝn above a Lipschitz graph and let d denote the exterior derivative on ℝn. We construct a convolution operator T which preserves support in Ω is smoothing of order 1 on the homogeneous function spaces, and is a potential map in the sense that dT is the identity on spaces of exact forms with support in Ω. Thus if f is exact and supported in Ω then there is a potential u, given by u = T f, of optimal regularity and supported in Ω, such that du = f. This has implications for the regularity in homogeneous function spaces of the de Rham complex on Ω with or without boundary conditions. The operator T is used to obtain an atomic characterisation of Hardy spaces Hp of exact forms with support in Ω when n/(n + 1) < p ≤ 1. This is done via an atomic decomposition of functions in the tent spaces Tp(ℝn _ ℝ+) with support in a tent T(Ω) as a sum of atoms with support away from the boundary of Ω . This new decomposition of tent spaces is useful, even for scalar valued functions.
Drets: Tots els drets reservats
Llengua: Anglès
Document: article ; recerca ; publishedVersion
Matèria: Exterior derivative ; Dierential forms ; Lipschitz domain ; Potential map ; Sobolev space ; Hardy space ; Tent space
Publicat a: Publicacions matemàtiques, Vol. 57, Núm. 2 (2013) , p. 295-331, ISSN 0214-1493

Adreça original: http://www.raco.cat/index.php/PublicacionsMatematiques/article/view/10.5565-PUBLMAT_57213_02
DOI: 10.5565/PUBLMAT_57213_02
DOI: 10.5565/287146

37 p, 488.1 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > Publicacions matemàtiques
Articles > Articles de recerca

 Registre creat el 2013-06-25, darrera modificació el 2017-10-15

   Favorit i Compartir