Priors about observables in vector autoregressions
Jarocinski, Marek
Marcet, Albert
Universitat Autònoma de Barcelona. Unitat de Fonaments de l'Anàlisi Econòmica
Institut d'Anàlisi Econòmica

Date: 2013
Description: 36 p.
Abstract: Standard practice in Bayesian VARs is to formulate priors on the autoregressive parameters, but economists and policy makers actually have priors about the behavior of observable variables. We show how this kind of prior can be used in a VAR under strict probability theory principles. We state the inverse problem to be solved and we propose a numerical algorithm that works well in practical situations with a very large number of parameters. We prove various convergence theorems for the algorithm. As an application, we first show that the results in Christiano et al. (1999) are very sensitive to the introduction of various priors that are widely used. These priors turn out to be associated with undesirable priors on observables. But an empirical prior on observables helps clarify the relevance of these estimates: we find much higher persistence of output responses to monetary policy shocks than the one reported in Christiano et al. (1999) and a significantly larger total effect.
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Language: Anglès
Series: Departament d'Economia i d'Història Econòmica. Unitat de Fonaments de l'Anàlisi Econòmica / Institut d'Anàlisi Econòmica (CSIC). Working papers
Series: Working papers ; 929.13
Document: Working paper
Subject: Política monetària ; Models economètrics ; Decisió estadística bayesiana, Teoria de la



36 p, 436.3 KB

The record appears in these collections:
Research literature > Working papers > Fundamentals Unit of the Economic Analysis. Working papers

 Record created 2014-01-24, last modified 2024-11-30



   Favorit i Compartir