Planar vector field versions of Carathéodory's and Loewner's conjectures
Gutierrez, C.
Sánchez-Bringas, F.

Data: 1997
Resum: Let r = 3, 4, . . . ,∞, ω. The Cr-Carathéodory’s Conjecture states that every Cr convex embedding of a 2-sphere into R3 must have at least two umbilics. The Cr-Loewner’s conjecture (stronger thanthe one of Carathéodory) states that there are no umbilics of index bigger than one. We show that these two conjectures are equivalent to others about planar vector fields. For instance, if r = ω, Cr-Carath'eodory’s Conjecture is equivalent to the following one: Let ρ > 0 and β : U ⊂ R2 → R, be of class Cr, where U is a neighborhood of the compact disc D(0, ρ) ⊂ R2 of radius ρ centered at 0. If β restricted to a neighborhood of the circle ∂D(0, ρ) has the form β(x, y) = (ax2 + by2)/(x2 + y2), where a < b < 0, then the vector field (defined in U) that takes (x, y) to (βxx(x, y) − βyy(x, y), 2βxy(x, y)) has at least two singularities in D(0, ρ).
Drets: Tots els drets reservats.
Llengua: Anglès.
Document: Article ; recerca ; article ; publishedVersion
Publicat a: Publicacions Matemàtiques, V. 41 n. 1 (1997) p. 169-179, ISSN 0214-1493

11 p, 128.9 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > Publicacions matemàtiques
Articles > Articles de recerca

 Registre creat el 2006-11-22, darrera modificació el 2018-09-08

   Favorit i Compartir