Weakly sufficient sets for A−∞(D)
Khôi, Le Hai (Institute of Information Technology (Vietnam))
Thomas, Pascal J. (Université Paul Sabatier. Laboratoire Emile Picard)

Data: 1998
Resum: In the space A−∞(D) of functions of polynomial growth, weakly sufficient sets are those such that the topology induced by restriction to the set coincides with the topology of the original space. Horowitz, Korenblum and Pinchuk defined sampling sets for A−∞(D) as those such that the restriction of a function to the set determines the type of growth of the function. We show that sampling sets are always weakly sufficient, that weakly sufficient sets are always of uniqueness, and provide examples of discrete sets that show that the converse implications do not hold.
Drets: Tots els drets reservats.
Llengua: Anglès.
Document: article ; recerca ; publishedVersion
Publicat a: Publicacions Matemàtiques, V. 42 n. 2 (1998) p. 435-448, ISSN 0214-1493

Adreça original: https://www.raco.cat/index.php/PublicacionsMatematiques/article/view/37945
DOI: 10.5565/PUBLMAT_42298_10

14 p, 158.5 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > Publicacions matemàtiques
Articles > Articles de recerca

 Registre creat el 2006-12-19, darrera modificació el 2018-07-18

   Favorit i Compartir