Google Scholar: cites
Growth and asymptotic sets of subharmonic functions II
Wu, J.-M.

Data: 1998
Resum: We study the relation between the growth of a subharmonic functionin the half space Rn+1 + and the size of its asymptotic set. In particular, we prove that for any n ¸ 1 and 0 < ® · n, there exists a subharmonic function u in the Rn+1 + satisfying the growth condition of order ® : u(x) · x¡® n+1 for 0 < xn+1 < 1, such that the Hausdor® dimension of the asymptotic set S ¸6=¡1 A(¸) is exactly n¡®. Here A(¸) is the set of boundary points at which f tends to ¸ along some curve. This proves the sharpness of a theorem due to Berman, Barth, Rippon, Sons, Fern¶andez, Heinonen, Llorente and Gardiner cumulatively.
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Publicat a: Publicacions matemàtiques, V. 42 n. 2 (1998) p. 449-460, ISSN 2014-4350

Adreça alternativa:
DOI: 10.5565/PUBLMAT_42298_11

12 p, 132.9 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > Publicacions matemàtiques
Articles > Articles de recerca

 Registre creat el 2006-12-19, darrera modificació el 2022-02-20

   Favorit i Compartir