Neural nets for indirect inference
Creel, Michael (Universitat Autònoma de Barcelona. Departament d'Economia i d'Història Econòmica)

Imprint: Universitat Autònoma de Barcelona. Unitat de Fonaments de l'Anàlisi Econòmica 2016
Description: 15 p.
Abstract: This paper shows how neural networks may be used to approximate the limited information posterior mean of a simulable model. Because the model is simulable, training and testing samples may be generated with sizes large enough to train well a net that is large enough, in terms of number of hidden layers and neurons, to learn the limited information posterior mean with good accuracy. The output of the net can be used as an estimator of the parameter, or, following Jiang et al. (2015), as an input to subsequent classical or Bayesian indirect inference estimation. Targeting the limited information posterior mean using neural nets is simpler, faster, and more successful than is targeting the full information posterior mean. Code to replicate the examples and to use the methods for other models is available at https://github. com/mcreel/NeuralNetsForIndirectInference. jl. This code uses the Mocha. jl package for the Julia language, which allows for easy access to GPU computing, which greatly accelerates training the net.
Grants: Ministerio de Educación y Ciencia ECO2014-52506-R
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Language: Anglès
Series: Departament d'Economia i d'Història Econòmica. Unitat de Fonaments de l'Anàlisi Econòmica / Institut d'Anàlisi Econòmica (CSIC). Working papers
Series: Working papers ; 960.16
Document: Working paper
Subject: Ciències socials ; Mètodes estadístics ; Machine learning ; Indirect inference ; Neural networks ; Approximate bayesian computing



15 p, 509.9 KB

The record appears in these collections:
Research literature > Working papers > Fundamentals Unit of the Economic Analysis. Working papers

 Record created 2016-04-06, last modified 2024-05-19



   Favorit i Compartir