Scopus: 3 citas, Google Scholar: citas
Limit cycles bifurcating from a 2-dimensional isochronous torus in R^3
Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Torregrosa, Joan (Universitat Autònoma de Barcelona. Departament de Matemàtiques)

Fecha: 2011
Resumen: In this paper we illustrate the explicit implementation of a method for computing limit cycles which bifurcate from a 2-dimensional isochronous set contained in ℝ3, when we perturb it inside a class of differential systems. This method is based in the averaging theory. As far as we know all applications of this method have been made perturbing noncompact surfaces, as for instance a plane or a cylinder in ℝ3. Here we consider polynomial perturbations of degree d of an isochronous torus. We prove that, up to first order in the perturbation, at most 2(d+1) limit cycles can bifurcate from a such torus and that there exist polynomial perturbations of degree d of the torus such that exactly ν limit cycles bifurcate from such a torus for every ν ∈ {2, 4,. . . ,2(d + 1)}.
Ayudas: Ministerio de Ciencia e Innovación MTM2008-03437
Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-410
Derechos: Tots els drets reservats.
Lengua: Anglès
Documento: Article ; recerca ; Versió acceptada per publicar
Materia: Limit cycle ; Periodic orbit ; Isochronous center ; Averaging method
Publicado en: Advanced Nonlinear Studies, Vol. 11 (2011) , p. 377-389, ISSN 2169-0375

DOI: 10.1515/ans-2011-0208


Postprint
15 p, 344.9 KB

El registro aparece en las colecciones:
Documentos de investigación > Documentos de los grupos de investigación de la UAB > Centros y grupos de investigación (producción científica) > Ciencias > GSD (Grupo de sistemas dinámicos)
Artículos > Artículos de investigación
Artículos > Artículos publicados

 Registro creado el 2016-05-06, última modificación el 2022-11-12



   Favorit i Compartir