Home > Articles > Published articles > Limit cycles of polynomial differential equations with quintic homogenous nonlinearities |
Date: | 2013 |
Abstract: | In this paper we mainly study the number of limit cycles which can bifurcate from the periodic orbits of the two centers x˙ = −y, y˙ = x; x˙ = −y(1 − (x2 + y2)2), y˙ = x(1 − (x2 + y2)2); when they are perturbed inside the class of all polynomial differential systems with quintic homogenous nonlinearities. We do this study using the averaging theory of first, second and third order. |
Note: | Agraïments: The second author is partially supported by the Algerian Ministry of Higher Education and Scientific Research. |
Note: | Número d'acord de subvenció MINECO/MTM2008-03437 |
Note: | Número d'acord de subvenció AGAUR/2009/SGR-410 |
Note: | Número d'acord de subvenció EC/FP7/2012/316338 |
Note: | Número d'acord de subvenció EC/FP7/2012/318999 |
Rights: | Tots els drets reservats. |
Language: | Anglès |
Document: | article ; recerca ; acceptedVersion |
Subject: | Limit cycle ; Periodic orbit ; Center ; Reversible center ; Averaging method |
Published in: | Journal of mathematical analysis and applications, Vol. 407 Núm. 1 (2013) , p. 16-22, ISSN 1096-0813 |
Postprint 10 p, 628.0 KB |