visitant ::
identificació
|
|||||||||||||||
Cerca | Lliura | Ajuda | Servei de Biblioteques | Sobre el DDD | Català English Español |
Pàgina inicial > Articles > Articles publicats > Fronts propagating with signal dependent speed in limited diffusion and related Hamilton-Jacobi formulations |
Data: | 2013 |
Resum: | We consider a class of limited diffusion equations and explore the formation of diffusion fronts as the result of a combination of diffusive and hyperbolic transport. We analyze a new class of Hamilton-Jacobi equations arising from the convective part of general Fokker-Planck equations ruled by a non-negative diffusion coefficient that depends on the unknown and on the gradient of the unknown. We explore the main features of the solution of the Hamilton-Jacobi equations that contain shocks and propose a suitable numerical scheme that approximates the solution in a consistent way with respect to the solution of the associated Fokker-Planck equation. We analyze three model problems covering different scenarios. One is the relativistic heat equation model where the speed of propagation of fronts is constant. A second one is a standard porous media model where the speed of propagation of fronts is a function of the density, is unbounded and can exceed any fixed value. We propose a third one which is a porous media model whose speed of propagating fronts depends on the density media and is limited. The three model problems satisfy a general Darcy law. We perform a set of numerical experiments under different piecewise smooth initial data with compact support and compare the behavior of the three different model problems. |
Ajuts: | Ministerio de Ciencia e Innovación MTM2011-28043 Ministerio de Ciencia e Innovación MTM2011-26995-C02-01 Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-345 |
Drets: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
Llengua: | Anglès |
Document: | Article ; recerca ; Versió acceptada per publicar |
Matèria: | Limited diffusion equations ; Hamilton-Jacobi equations ; Viscosity solutions with shocks ; Numerical approximation |
Publicat a: | Applied Numerical Mathematics, Vol. 73 (2013) , p. 48-62, ISSN 0168-9274 |
Postprint 26 p, 1.5 MB |