| Home > Articles > Published articles > Limit cycles for a class of continuous and discontinuous cubic polynomial differential systems |
| Date: | 2014 |
| Abstract: | We study the maximum number of limit cycles that bifurcate from the periodic solutions of the family of isochronous cubic polynomial centers x˙ = y(-1 + 2αx + 2βx2), y˙ = x + α(y2 - x2) + 2βxy2, α ∈ R, β < 0, when it is perturbed inside the classes of all continuous and discontinuous cubic polynomial differential systems. We obtain that the maximum number of limit cycles which can be obtained by the averaging method of first order is 3 for the perturbed continuous systems and for the perturbed discontinuous systems at least 12 limit cycles can appear. |
| Grants: | Ministerio de Ciencia e Innovación MTM2008-03437 Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-410 European Commission 316338 European Commission 318999 |
| Note: | Agraïments: FEDER-UNAB10-4E-378. The first and second author are supported by CAPES-MECD grant PHB-2009-0025-PC. The third author is supported by FAPESP-2010/17956-1. |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Averaging theory ; Isochronous center ; Limit cycles ; Periodic orbit ; Polynomial vector field |
| Published in: | Qualitative theory of dynamical systems, Vol. 13 Núm. 1 (2014) , p. 129-148, ISSN 1662-3592 |
Postprint 19 p, 640.1 KB |