| Home > Articles > Published articles > Zero-Hopf bifurcation in the Fitzhugh-Nagumo system |
| Date: | 2014 |
| Abstract: | We characterize the values of the parameters for which a zero-Hopf equilibrium point takes place at the singular points, namely, O (the origin), P+ and P- in the FitzHugh-Nagumo system. Thus we find two 2-parameter families of the FitzHugh-Nagumo system for which the equilibrium point at the origin is a zero-Hopf equilibrium. For these two families we prove the existence of a periodic orbit bifurcating from the zero-Hopf equilibrium point O. We prove that exist three 2-parameter families of the FitzHughNagumo system for which the equilibrium point at P+ and P- is a zero-Hopf equilibrium point. For one of these families we prove the existence of 1, or 2, or 3 periodic orbits borning at P+ and P-. |
| Grants: | Ministerio de Ciencia e Innovación MTM2008-03437 Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-410 European Commission 316338 |
| Note: | Agraïments: The first author is supported by the FAPESP-BRAZIL grants 2010/18015-6 and 2012/05635-1. The third author is partially supported by Dirección de Investigación DIUBB 120408 4/R. |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | FitzHugh-Nagumo system ; Periodic orbit ; Averaging theory ; Zero Hopf bifurcation |
| Published in: | Mathematical methods in the applied sciences, 2014 , ISSN 1099-1476 |
Postprint 15 p, 712.5 KB |