Convergence of functions of self-adjoint operators and applications
Brown, Lawrence G. (Purdue University. Department of Mathematics)

Data: 2016
Resum: The main result (roughly) is that if Hi converges weakly to H and if also f (Hi) converges weakly to f(H), for a single strictly convex continuous function f, then (Hi) must converge strongly to H. One application is that if f(pr(H)) = pr(f(H)), where pr denotes compression to a closed subspace M, then M must be invariant for H. A consequence of this is the verification of a conjecture of Arveson, that Theorem 9. 4 of [Arv] remains true in the infinite dimensional case. And there are two applications to operator algebras. If h and f(h) are both quasimultipliers, then h must be a multiplier. Also (still roughly stated), if h and f(h) are both in pAsap, for a closed projection p, then h must be strongly q-continuous on p.
Drets: Tots els drets reservats
Llengua: Anglès
Document: article ; recerca ; publishedVersion
Matèria: Self-adjoint operator ; Weak convergence ; Strong convergence ; Strictly convex function ; Korovkin type theorem ; Kaplansky density theorem ; Quasimultiplier ; Q-continuous
Publicat a: Publicacions matemàtiques, Vol. 60 Núm. 2 (2016) , p. 551-564 (Articles) , ISSN 2014-4350

Adreça original:
DOI: 10.5565/PUBLMAT_60216_09
DOI: 10.5565/10.5565-PUBLMAT_60216_09

14 p, 344.1 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > Publicacions matemàtiques
Articles > Articles de recerca

 Registre creat el 2016-07-14, darrera modificació el 2018-03-12

   Favorit i Compartir