| Home > Articles > Published articles > Z₂Z₄-additive cyclic codes, generator polynomials, and dual codes |
| Date: | 2016 |
| Abstract: | A Z₂Z₄-additive code C ⊆ Zα2 × Zβ₄ is called cyclic code if the set of coordinates can be partitioned into two subsets, the set of Z₂ and the set of Z₄ coordinates, such that any cyclic shift of the coordinates of both subsets leaves invariant the code. These codes can be identified as submodules of the Z₄[x]-module Z₂[x]/(x^α - 1) × Z₄ [x]/(x^β - 1). The parameters of a Z₂Z₄-additive cyclic code are stated in terms of the degrees of the generator polynomials of the code. The generator polynomials of the dual code of a Z₂Z₄-additive cyclic code are determined in terms of the generator polynomials of the code C. |
| Grants: | Ministerio de Economía y Competitividad TIN2016-77918-P Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-691 |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Binary cyclic codes ; Cyclic codes over Z₄ ; Duality ; Z₂Z₄-additive cyclic codes |
| Published in: | IEEE transactions on information theory, Vol. 62 No. 11 (Nov. 2016) , p. 6348-6354, ISSN 1557-9654 |
Post-print 15 p, 2.0 MB |