| Home > Articles > Published articles > Canards existence in FitzHugh-Nagumo and Hodgkin-Huxley neuronal models |
| Additional title: | Canards existence in R 2+2 |
| Date: | 2015 |
| Abstract: | In a previous paper we have proposed a new method for proving the existence of "canard solutions" for three and four-dimensional singularly perturbed systems with only one fast variable. The aim of this work is to extend this method to the case of four-dimensional singularly perturbed systems with two slow and two fast variables. This method enables to state a unique generic condition for the existence of "canard solutions" for such four-dimensional singularly perturbed systems which is based on the stability of folded singularities (pseudo singular points in this case) of the normalized slow dynamics deduced from a well-known property of linear algebra. This unique generic condition is perfectly identical to that provided in previous works. Applications of this method to the famous coupled FitzHugh-Nagumo equations and to the Hodgkin-Huxley model enables to show the existence of "canard solutions" in such systems. |
| Grants: | Ministerio de Economía y Competitividad MTM2008-03437 Ministerio de Economía y Competitividad MTM2013-40998-P Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-568 European Commission 318999 European Commission 316338 Ministerio de Economía y Competitividad FEDER-UNAB10-4E-378 |
| Note: | El títol de la versió pre-print de l'article és: Canards existence in R 2+2 |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Canard solutions ; Geometric singular perturbation theory ; Singularly perturbed dynamical systems |
| Published in: | Mathematical Problems in Engineering, Vol. 2015 art. 342010, p. 17pp., ISSN 1563-5147 |
Postprint 38 p, 1.1 MB |