Web of Science: 3 cites, Scopus: 3 cites, Google Scholar: cites,
Dually actuated atomic force microscope with miniaturized magnetic bead-actuators for single-molecule force measurements
Sevim, Semih (Bogazici University. Department of Electrical and Electronics Engineering)
Ozer, Sevil (Bogazici University. Department of Electrical and Electronics Engineering)
Feng, Luying (Bogazici University. Department of Electrical and Electronics Engineering)
Wurzel, Joel (University of Würzburg. Institute of Pharmacy and Food Chemistry)
Fakhraee, Arielle (Aeon Scientific AG)
Shamsudhin, Naveen (ETH Zürich. Institute of Robotics and Intelligent Systems)
Jang, Bumjin (ETH Zürich. Institute of Robotics and Intelligent Systems)
Alcantara, Carlos (ETH Zürich. Institute of Robotics and Intelligent Systems)
Ergeneman, Olgaç (ETH Zürich. Institute of Robotics and Intelligent Systems)
Pellicer Vilà, Eva Maria (Universitat Autònoma de Barcelona. Departament de Física)
Sort Viñas, Jordi (Institució Catalana de Recerca i Estudis Avançats)
Lühmann, Tessa (University of Würzburg. Institute of Pharmacy and Food Chemistry)
Pané i Vidal, Salvador (ETH Zürich. Institute of Robotics and Intelligent Systems)
Nelson, Bradley J. (ETH Zürich. Institute of Robotics and Intelligent Systems)
Torun, Hamdi (Bogazici University. Department of Electrical and Electronics Engineering)

Data: 2016
Resum: We report for the first time on a novel Atomic Force Microscopy (AFM) technique with dual actuation capabilities using both piezo and magnetic bead actuation for advanced single-molecule force spectroscopy experiments. The experiments are performed by manipulating functionalized magnetic microbeads using an electromagnet against a stationary AFM cantilever. Magnetic actuation has been demonstrated for AFM before to actuate cantilevers, but here we report for the first time a method where we keep the cantilever stationary and accomplish actuation via free-manipulated microstructures. This method leads to a significant reduction of mechanical drift in the system since the experiments are performed without a need for a hard surface and the measured force between the cantilever and the bead is inherently differential. In addition, shrinking the size of the actuator can minimize hydrodynamic forces affecting the AFM cantilever. We conducted single-molecule force spectroscopy and force-clamp experiments with biotin/streptavidin as a model system using the new method. The new method reported herein allows applying constant force on the beads to perform force-clamp experiments without any active feedback, which might be crucial for a deeper understanding of interaction between biomolecules.
Ajuts: European Commission 296679
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Matèria: Atomic force microscopy ; Magnetic beads ; Force spectroscopy ; Single-molecule experiments
Publicat a: Nanoscale, Vol. 1, Issue 6 (November 2016) , p. 488-495, ISSN 2040-3372

DOI: 10.1039/c6nh00134c


Posprint
19 p, 606.3 KB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Grup de nanoenginyeria de materials, nanomagnetisme i nanomecànica (Gnm3)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2017-02-20, darrera modificació el 2023-12-11



   Favorit i Compartir