Web of Science: 21 citations, Scopus: 20 citations, Google Scholar: citations,
Quantifying conformational changes in GPCRs : glimpse of a common functional mechanism
Dalton, James A.R. (Universitat Autònoma de Barcelona. Institut de Neurociències)
Lans, Isaias (Universitat Autònoma de Barcelona. Institut de Neurociències)
Giraldo, Jesús (Universitat Autònoma de Barcelona. Institut de Neurociències)

Date: 2015
Abstract: Background: G-protein-coupled receptors (GPCRs) are important drug targets and a better understanding of their molecular mechanisms would be desirable. The crystallization rate of GPCRs has accelerated in recent years as techniques have become more sophisticated, particularly with respect to Class A GPCRs interacting with G-proteins. These developments have made it possible for a quantitative analysis of GPCR geometrical features and binding-site conformations, including a statistical comparison between Class A GPCRs in active (agonist-bound) and inactive (antagonist-bound) states. Results: Here we implement algorithms for the analysis of interhelical angles, distances, interactions and binding-site volumes in the transmembrane domains of 25 Class A GPCRs (7 active and 18 inactive). Two interhelical angles change in a statistically significant way between average inactive and active states: TM3-TM6 (by -9°) and TM6-TM7 (by +12°). A third interhelical angle: TM5-TM6 shows a trend, changing by -9°. In the transition from inactive to active states, average van der Waals interactions between TM3 and TM7 significantly increase as the average distance between them decreases by >2 Å. Average H-bonding between TM3 and TM6 decreases but is seemingly compensated by an increase in H-bonding between TM5 and TM6. In five Class A GPCRs, crystallized in both active and inactive states, increased H-bonding of agonists to TM6 and TM7, relative to antagonists, is observed. These protein-agonist interactions likely favour a change in the TM6-TM7 angle, which creates a narrowing in the binding pocket of activated receptors and an average ~200 Å3 reduction in volume. Conclusions: In terms of similar conformational changes and agonist binding pattern, Class A GPCRs appear to share a common mechanism of activation, which can be exploited in future drug development.
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès.
Document: article ; recerca ; publishedVersion
Subject: GPCR ; Quantify ; Conformational change ; Receptor activation ; Interhelical interaction ; Dihedral angle
Published in: BMC Bioinformatics, Vol. 16 N. 124 (April 2015) , p. 1-15, ISSN 1471-2105

DOI: 10.1186/s12859-015-0567-3
PMID: 25902715

15 p, 1.6 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (scientific output) > Health sciences and biosciences > Institut de Neurociències (INc)
Articles > Research articles
Articles > Published articles

 Record created 2017-03-08, last modified 2018-07-28

   Favorit i Compartir