Scopus: 2 citations, Web of Science: 0 citations,
Changes in nutrient concentrations of leaves and roots in response to global change factors
Sardans i Galobart, Jordi (Centre de Recerca Ecològica i Aplicacions Forestals)
Grau Fernández, Oriol (Centre de Recerca Ecològica i Aplicacions Forestals)
Chen, Han Y. H. (Lakehead University. Faculty of Natural Resources Management)
Janssens, Ivan A. (University of Antwerp (Bèlgica))
Ciais, Philippe (Laboratoire des Sciences du Climat et de l’Environnement)
Piao, Shilong (Sino-French Institute for Earth System Science)
Peñuelas, Josep (Centre de Recerca Ecològica i Aplicacions Forestals)

Date: 2017
Abstract: Global change impacts on biogeochemical cycles have been widely studied, but our understanding of whether the responses of plant elemental composition to global change drivers differ between above- and belowground plant organs remains incomplete. We conducted a meta-analysis of 201 reports including 1,687 observations of studies that have analyzed simultaneously N and P concentrations changes in leaves and roots in the same plants in response to drought, elevated [CO₂], and N and P fertilization around the world, and contrasted the results within those obtained with a general database (838 reports and 14,772 observations) that analyzed the changes in N and P concentrations in leaves and/or roots of plants submitted to the commented global change drivers. At global level, elevated [CO₂] decreased N concentrations in leaves and roots and decreased N:P ratio in roots but no in leaves, but was not related to P concentration changes. However, the response differed among vegetation types. In temperate forests, elevated [CO₂] was related with lower N concentrations in leaves but not in roots, whereas in crops, the contrary patterns were observed. Elevated [CO₂] decreased N concentrations in leaves and roots in tundra plants, whereas not clear relationships were observed in temperate grasslands. However, when elevated [CO₂] and N fertilization coincided, leaves had lower N concentrations, whereas root had higher N concentrations suggesting that more nutrients will be allocated to roots to improve uptake of the soil resources not directly provided by the global change drivers. N fertilization and drought increased foliar and root N concentrations while the effects on P concentrations were less clear. The changes in N and P allocation to leaves and root, especially those occurring in opposite direction between them have the capacity to differentially affect above- and belowground ecosystem functions, such as litter mineralization and above- and belowground food webs.
Note: Número d'acord de subvenció EC/FP7/610028
Note: Número d'acord de subvenció MINECO/CGL2013-48074-P
Note: Número d'acord de subvenció AGAUR/2014/SGR-274
Rights: Tots els drets reservats
Language: Anglès
Document: article ; recerca ; acceptedVersion
Subject: CO 2 ; N deposition ; N:P ; Drought ; Ecological stoichiometry ; Nitrogen ; Phosphorus
Published in: Global change biology, Vol. 23, issue 9 (Sep. 2017) , p. 3849-3856, ISSN 1365-2486

DOI: 10.1111/gcb.13721


Available from: 2018-09-30
Post-print

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (scientific output) > Experimental sciences > CREAF (Centre de Recerca Ecològica i d'Aplicacions Forestals) > Imbalance-P
Articles > Research articles
Articles > Published articles

 Record created 2017-07-05, last modified 2017-10-12



   Favorit i Compartir