Wellposedness of a nonlinear, logarithmic Schrödinger equation of Doebner-Goldin type modeling quantum dissipation
Guerrero, Pilar
López, J. L.
Montejo-Gámez, J.
Nieto, J.
Universitat Autònoma de Barcelona. Centre de Recerca Matemàtica

Publicació: Centre de Recerca Matemàtica 2011
Descripció: 35 p.
Resum: This paper is concerned with the modeling and analysis of quantum dissipation phenomena in the Schrödinger picture. More precisely, we do investigate in detail a dissipative, nonlinear Schrödinger equation somehow accounting for quantum Fokker-Planck effects, and how it is drastically reduced to a simpler logarithmic equation via a nonlinear gauge transformation in such a way that the physics underlying both problems keeps unaltered. From a mathematical viewpoint, this allows for a more achievable analysis regarding the local wellposedness of the initial-boundary value problem. This simplification requires the performance of the polar (modulus-argument) decomposition of the wavefunction, which is rigorously attained (for the first time to the best of our knowledge) under quite reasonable assumptions.
Drets: L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: Creative Commons
Llengua: Anglès
Col·lecció: Centre de Recerca Matemàtica. Prepublicacions
Col·lecció: Prepublicacions del Centre de Recerca Matemàtica ; 1098
Document: Article ; Prepublicació ; Versió de l'autor
Matèria: Equacions no lineals ; Quàntums, Teoria dels ; Logaritmes

Adreça alternativa: https://hdl.handle.net/2072/196883


35 p, 487.6 KB

El registre apareix a les col·leccions:
Documents de recerca > Prepublicacions

 Registre creat el 2017-10-16, darrera modificació el 2021-08-08



   Favorit i Compartir