Full-field thermal imaging of quasiballistic crosstalk reduction in nanoscale devices
Ziabari, Amirkoushyar 
(Birck Nanotechnology Center)
Torres, Pol (Universitat Autònoma de Barcelona. Departament de Física)
Vermeersch, Bjorn (Commissariat à l'Énergie Atomique et aux Énergies Alternatives (França))
Xuan, Yi (Birck Nanotechnology Center)
Cartoixà Soler, Xavier 
(Universitat Autònoma de Barcelona. Departament de Física)
Torelló, Alvar (Universitat Autònoma de Barcelona. Departament de Física)
Bahk, Je-Hyeong (Birck Nanotechnology Center)
Koh, Yee Rui (Birck Nanotechnology Center)
Parsa, Maryam (Purdue University. Electrical and Computer Engineering)
Ye, Peide D. (Birck Nanotechnology Center)
Àlvarez Calafell, Francesc Xavier
(Universitat Autònoma de Barcelona. Departament de Física)
Shakouri, Ali (Birck Nanotechnology Center)
Data: |
2018 |
Resum: |
Understanding nanoscale thermal transport is of substantial importance for designing contemporary semiconductor technologies. Heat removal from small sources is well established to be severely impeded compared to diffusive predictions due to the ballistic nature of the dominant heat carriers. Experimental observations are commonly interpreted through a reduction of effective thermal conductivity, even though most measurements only probe a single aggregate thermal metric. Here, we employ thermoreflectance thermal imaging to directly visualise the 2D temperature field produced by localised heat sources on InGaAs with characteristic widths down to 100 nm. Besides displaying effective thermal performance reductions up to 50% at the active junctions in agreement with prior studies, our steady-state thermal images reveal that, remarkably, 1-3 μm adjacent to submicron devices the crosstalk is actually reduced by up to fourfold. Submicrosecond transient imaging additionally shows responses to be faster than conventionally predicted. A possible explanation based on hydrodynamic heat transport, and some open questions, are discussed. When thermal fields in semiconductors approach the submicron scale, non-diffusive heat transport is observed where Fourier based heat transport models fail. Here, the authors use thermal imaging to visualise these thermal field variations and in turn derive a hydrodynamic heat transport model. |
Ajuts: |
Ministerio de Economía y Competitividad TEC2015-67462-C2-2-R Ministerio de Economía y Competitividad TEC2015-67462-C2-1-R Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-384
|
Drets: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original.  |
Llengua: |
Anglès |
Document: |
Article ; recerca ; Versió publicada |
Matèria: |
Condensed matter physics ;
Imaging techniques ;
Nanoscale devices ;
Nanoscale materials |
Publicat a: |
Nature communications, Vol. 9 (Jan. 2018) , art. 255, ISSN 2041-1723 |
DOI: 10.1038/s41467-017-02652-4
PMID: 29343700
El registre apareix a les col·leccions:
Articles >
Articles de recercaArticles >
Articles publicats
Registre creat el 2018-03-06, darrera modificació el 2022-02-06