| Data: |
2001 |
| Resum: |
A complex analytic space is said to have the D*-extension property if and only if any holomorphic map from the punctured disk to the given space extends to a holomorphic map from the whole disk to the same space. A Hartogs domain H over the base X (a complex space) is a subset of X × C where all the fibers over X are disks centered at the origin, possibly of infinite radius. Denote by [phi] the function giving the logarithm of the reciprocal of the radius of the fibers, so that, when X is pseudoconvex, H is pseudoconvex if and only if [phi] is plurisubharmonic. We prove that H has the D*-extension property if and only if (i) X itself has the D*-extension property, (ii) [phi] takes only finite values and (iii) [phi] is plurisubharmonic. This implies the existence of domains which have the D*-extension property without being (Kobayashi) hyperbolic, and simplifies and generalizes the authors' previous such example. |
| Drets: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Llengua: |
Anglès |
| Document: |
Article ; recerca ; Versió publicada |
| Publicat a: |
Publicacions matemàtiques, V. 45 N. 2 (2001) , p. 421-429, ISSN 2014-4350 |