Data: |
2002 |
Resum: |
The purpose of this paper is to extend the Díaz-Saá's inequality for the unbounded domains as RN: [fórmula]. The proof is based on the Picone's identity which is very useful in problems involving p-Laplacian. In a second part, we study some properties of the first eigenvalue for a system of p-Laplacian. We use Díaz-Saá's inequality to prove uniqueness and Egorov's theorem for the isolation. These results generalize J. Fleckinger, R. F. Manásevich, N. M. Stavrakakis and F. de Thélin's work [9] for the first property and A. Anane's one for the isolation. |
Drets: |
Tots els drets reservats.  |
Llengua: |
Anglès |
Document: |
Article ; recerca ; Versió publicada |
Publicat a: |
Publicacions matemàtiques, V. 46 N. 2 (2002) , p. 473-488, ISSN 2014-4350 |