Two different strategies to enhance osseointegration in porous titanium : Inorganic thermo-chemical treatment versus organic coating by peptide adsorption
Ortiz-Hernandez, Monica 
(Universitat Politècnica de Catalunya. Centre de Recerca en Ciencia i Enginyeria Multiescala de Barcelona)
Rappe, Katrin Steffanie (Universitat Autònoma de Barcelona. Departament de Medicina i Cirurgia Animals)
Molmeneu, Meritxell 
(Universitat Politècnica de Catalunya. Centre de Recerca en Ciencia i Enginyeria Multiescala de Barcelona)
Mas-Moruno, Carles 
(Universitat Politècnica de Catalunya. Centre de Recerca en Ciencia i Enginyeria Multiescala de Barcelona)
Guillem-Marti, Jordi 
(Universitat Politècnica de Catalunya. Centre de Recerca en Ciencia i Enginyeria Multiescala de Barcelona)
Punset, Miquel 
(Universitat Politècnica de Catalunya. Centre de Recerca en Ciencia i Enginyeria Multiescala de Barcelona)
Caparrós, Cristina (Universitat Politècnica de Catalunya. Centre de Recerca en Ciencia i Enginyeria Multiescala de Barcelona)
Calero, José (Universitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica)
Franch, Jordi
(Universitat Autònoma de Barcelona. Departament de Medicina i Cirurgia Animals)
Fernandez-Fairen, Mariano
(Universitat Internacional de Catalunya. Facultat d'Odontologia)
Gil Mur, Javier
(Universitat Internacional de Catalunya. Facultat d'Odontologia)
Data: |
2018 |
Resum: |
In this study, highly-interconnected porous titanium implants were produced by powder sintering with different porous diameters and open interconnectivity. The actual foams were produced using high cost technologies: Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD), and spark plasma sintering, and the porosity and/or interconnection was not optimized. The aim was to generate a bioactive surface on foams using two different strategies, based on inorganic thermo-chemical treatment and organic coating by peptide adsorption, to enhance osseointegration. Porosity was produced using NaCl as a space holder and polyethyleneglicol as a binder phase. Static and fatigue tests were performed in order to determine mechanical behaviors. Surface bioactivation was performed using a thermo-chemical treatment or by chemical adsorption with peptides. Osteoblast-like cells were cultured and cytotoxicity was measured. Bioactivated scaffolds and a control were implanted in the tibiae of rabbits. Histomorphometric evaluation was performed at 4 weeks after implantation. Interconnected porosity was 53% with an average diameter of 210 µm and an elastic modulus of around 1 GPa with good mechanical properties. The samples presented cell survival values close to 100% of viability. Newly formed bone was observed inside macropores, through interconnected porosity, and on the implant surface. Successful bone colonization of inner structure (40%) suggested good osteoconductive capability of the implant. Bioactivated foams showed better results than non-treated ones, suggesting both bioactivation strategies induce osteointegration capability. |
Drets: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original.  |
Llengua: |
Anglès |
Document: |
Article ; recerca ; Versió publicada |
Matèria: |
Titanium foams ;
Osseointegration ;
Porosity ;
Bioactive materials |
Publicat a: |
International journal of molecular sciences, Vol. 19 Núm. 9 (september 2018) , p. 2574, ISSN 1422-0067 |
DOI: 10.3390/ijms19092574
PMID: 30200178
El registre apareix a les col·leccions:
Articles >
Articles de recercaArticles >
Articles publicats
Registre creat el 2019-01-16, darrera modificació el 2025-01-31