Data: |
2004 |
Resum: |
Let d be an integer, and let E be a nonempty closed subset of Rn. Assume that E is locally uniformly non flat, in the sense that for x ∈ E and r > 0 small, E∩B(x, r) never stays ε0r-close to an affine d-plane. Also suppose that E satisfies locally uniformly some appropriate d-dimensional topological nondegeneracy condition, like Semmes' Condition B. Then the Hausdorff dimension of E is strictly larger than d. We see this as an application of uniform rectifiability results on Almgren quasiminimal (restricted) sets. |
Drets: |
Tots els drets reservats. |
Llengua: |
Anglès |
Document: |
Article ; recerca ; Versió publicada |
Matèria: |
Hausdorff dimension ;
Quasiminimal sets ;
Restricted sets ;
Atness |
Publicat a: |
Publicacions matemàtiques, V. 48 N. 1 (2004) , p. 187-225, ISSN 2014-4350 |