Data: |
2005 |
Resum: |
We extend the analysis of weighted Bergman spaces Ap;q/s on symmetric tube domains, contained in [2], to the case where the weights are positive powers [formula] of the principal minors [Delta]1,. . . ,[Delta]r on the symmetric cone [omega]. We discuss the realization of the boundary distributions of functions in Ap;q/s in terms of Besov-type spaces Bp;q/s adapted to the structure of the cone. We give a necessary and a sufficient condition on the values of p, q and s for which this identification between Ap;q/s and Bp;q/s holds. We also present a continuous version of thesse latter spaces which is new even for the case s1 = . . . = s1 considered in [2]. We use these results to discuss multipliers between Besov spaces and the boundedness of the weighted Bergman projection Ps: Lp;q/s --> Ap;q/s. The situation in the rank two case is specifically dealt with. |
Drets: |
Tots els drets reservats.  |
Llengua: |
Anglès |
Document: |
Article ; recerca ; Versió publicada |
Matèria: |
Bergman projection ;
Jordan algebra ;
Besov multipliers ;
Boundary values |
Publicat a: |
Publicacions matemàtiques, V. 49 N. 1 (2005) , p. 21-72, ISSN 2014-4350 |