Web of Science: 112 citations, Scopus: 114 citations, Google Scholar: citations,
High-resolution mapping of infraslow cortical brain activity enabled by graphene microtransistors
Masvidal Codina, Eduard (Institut de Microelectrònica de Barcelona)
Illa, Xavi (Institut de Microelectrònica de Barcelona)
Dasilva, Miguel (Institut d'Investigacions Biomèdiques August Pi i Sunyer)
Bonaccini Calia, Andrea (Institut Català de Nanociència i Nanotecnologia)
Dragojević, Tanja (Institut de Ciències Fotòniques)
Vidal Rosas, Ernesto E. (Institut de Ciències Fotòniques)
Prats Alfonso, Elisabet (Institut de Microelectrònica de Barcelona)
Martínez Aguilar, Javier (Institut de Microelectrònica de Barcelona)
De la Cruz, Jose (Institut Català de Nanociència i Nanotecnologia)
Garcia Cortadella, Ramon (Institut Català de Nanociència i Nanotecnologia)
Godignon, Philippe (Institut de Microelectrònica de Barcelona)
Rius, Gemma (Institut de Microelectrònica de Barcelona)
Camassa, Alessandra (Institut d'Investigacions Biomèdiques August Pi i Sunyer)
Del Corro, Elena (Institut Català de Nanociència i Nanotecnologia)
Bousquet, Jessica (Institut Català de Nanociència i Nanotecnologia)
Hébert, Clément (Institut Català de Nanociència i Nanotecnologia)
Durduran, Turgut (Institució Catalana de Recerca i Estudis Avançats)
Villa, Rosa (Institut de Microelectrònica de Barcelona)
Sánchez-Vives, María V. (Institució Catalana de Recerca i Estudis Avançats)
Garrido, Jose (Institut Català de Nanociència i Nanotecnologia)
Guimerà Brunet, Anton (Institut de Microelectrònica de Barcelona)

Date: 2019
Abstract: Recording infraslow brain signals (<0. 1 Hz) with microelectrodes is severely hampered by current microelectrode materials, primarily due to limitations resulting from voltage drift and high electrode impedance. Hence, most recording systems include high-pass filters that solve saturation issues but come hand in hand with loss of physiological and pathological information. In this work, we use flexible epicortical and intracortical arrays of graphene solution-gated field-effect transistors (gSGFETs) to map cortical spreading depression in rats and demonstrate that gSGFETs are able to record, with high fidelity, infraslow signals together with signals in the typical local field potential bandwidth. The wide recording bandwidth results from the direct field-effect coupling of the active transistor, in contrast to standard passive electrodes, as well as from the electrochemical inertness of graphene. Taking advantage of such functionality, we envision broad applications of gSGFET technology for monitoring infraslow brain activity both in research and in the clinic.
Grants: European Commission 696656
European Commission 732032
Ministerio de Economía y Competitividad IJCI-2015-25201
Ministerio de Economía y Competitividad DPI2015-64358-C2-1-R
Ministerio de Economía y Competitividad SEV-2015-0522
Ministerio de Economía y Competitividad BFU2017-85048-R
Ministerio de Economía y Competitividad SEV-2017-0706
Rights: Tots els drets reservats.
Language: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Subject: Active transistors ; Brain activity ; Broad application ; Cortical spreading depression ; Electrode impedance ; High-resolution mapping ; Local field potentials ; Recording systems ; Animals ; Brain Mapping ; Frontal Lobe ; Graphite ; Microelectrodes ; Microtechnology ; Models, Molecular ; Molecular Conformation ; Rats ; Transistors, Electronic
Published in: Nature materials, Vol. 18, Issue 3 (March 2019) , p. 280-288, ISSN 1476-4660

DOI: 10.1038/s41563-018-0249-4
PMID: 30598536


Preprint
21 p, 1.9 MB

Postprint
23 p, 1.8 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2019-06-12, last modified 2024-02-20



   Favorit i Compartir