Google Scholar: cites
Template-Assisted Scalable Nanowire Networks
Friedl, Martin (École Polytechnique Fédérale de Lausanne)
Cerveny, Kris (University of Basel. Department of Physics)
Weigele, Pirmin (University of Basel. Department of Physics)
Tütüncüoglu, Gözde (École Polytechnique Fédérale de Lausanne)
Martí-Sánchez, Sara (Institut Català de Nanociència i Nanotecnologia)
Huang, Chunyi (Northwestern University. Department of Materials Science and Engineering)
Patlatiuk, Taras (University of Basel. Department of Physics)
Potts, Heidi A. (École Polytechnique Fédérale de Lausanne)
Sun, Zhiyuan (Northwestern University. Department of Materials Science and Engineering)
Hill, Megan O. (Northwestern University. Department of Materials Science and Engineering)
Güniat, Lucas (École Polytechnique Fédérale de Lausanne)
Kim, Wonjong (École Polytechnique Fédérale de Lausanne)
Zamani, Mahdi (École Polytechnique Fédérale de Lausanne)
Dubrovskii, Vladimir G. (ITMO University)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Lauhon, Lincoln J. (Northwestern University. Department of Materials Science and Engineering)
Zumbühl, Dominik M. (University of Basel. Department of Physics)
Fontcuberta i Morral, Anna (École Polytechnique Fédérale de Lausanne)

Data: 2018
Resum: Topological qubits based on Majorana Fermions have the potential to revolutionize the emerging field of quantum computing by making information processing significantly more robust to decoherence. Nanowires are a promising medium for hosting these kinds of qubits, though branched nanowires are needed to perform qubit manipulations. Here we report a gold-free templated growth of III-V nanowires by molecular beam epitaxy using an approach that enables patternable and highly regular branched nanowire arrays on a far greater scale than what has been reported thus far. Our approach relies on the lattice-mismatched growth of InAs on top of defect-free GaAs nanomembranes yielding laterally oriented, low-defect InAs and InGaAs nanowires whose shapes are determined by surface and strain energy minimization. By controlling nanomembrane width and growth time, we demonstrate the formation of compositionally graded nanowires with cross-sections less than 50 nm. Scaling the nanowires below 20 nm leads to the formation of homogeneous InGaAs nanowires, which exhibit phase-coherent, quasi-1D quantum transport as shown by magnetoconductance measurements. These results are an important advance toward scalable topological quantum computing.
Ajuts: Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-327
Ministerio de Economía y Competitividad ENE2017-85087-C3
Ministerio de Economía y Competitividad SEV-2013-0295
European Commission 654360
Nota: This is an open access article published under an ACS AuthorChoice License. See Standard ACS AuthorChoice/Editors' Choice Usage Agreement - https://pubs.acs.org/page/policy/authorchoice_termsofuse.html
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Matèria: Branched nanowires ; Energy minimization ; Lattice-mismatched ; Magnetoconductance ; Nanowire networks ; Quantum Computing ; Quantum transport ; Templated growth
Publicat a: Nano letters, Vol. 18, Issue 4 (April 2018) , p. 2666-2671, ISSN 1530-6992

DOI: 10.1021/acs.nanolett.8b00554


Postprint
22 p, 841.0 KB

6 p, 3.8 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2019-07-26, darrera modificació el 2022-09-10



   Favorit i Compartir