Google Scholar: cites
Insight into the Degradation Mechanisms of Atomic Layer Deposited TiO2 as Photoanode Protective Layer
Ros, Carles (Institut de Recerca en Energia de Catalunya)
Carretero González, Nina Magali (Institut de Recerca en Energia de Catalunya)
David, Jérémy (Institut Català de Nanociència i Nanotecnologia)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Andreu, Teresa (Institut de Recerca en Energia de Catalunya)
Morante, Joan Ramon (Institut de Recerca en Energia de Catalunya)

Data: 2019
Resum: Around 100 nm thick TiO layers deposited by atomic layer deposition (ALD) have been investigated as anticorrosion protective films for silicon-based photoanodes decorated with 5 nm NiFe catalyst in highly alkaline electrolyte. Completely amorphous layers presented high resistivity; meanwhile, the ones synthesized at 300 °C, having a fully anatase crystalline TiO structure, introduced insignificant resistance, showing direct correlation between crystallization degree and electrical conductivity. The conductivity through crystalline TiO layers has been found not to be homogeneous, presenting preferential conduction paths attributed to grain boundaries and defects within the crystalline structure. A correlation between the conductivity atomic force microscopy measurements and grain interstitials can be seen, supported by high-resolution transmission electron microscopy cross-sectional images presenting defective regions in crystalline TiO grains. It was found that the conduction mechanism goes through the injection of electrons coming from water oxidation from the electrocatalyst into the TiO conduction band. Then, electrons are transported to the Si/SiO/TiO interface where electrons recombine with holes given by the pn-Si junction. No evidences of intra-band-gap states in TiO responsible of conductivity have been detected. Stability measurements of fully crystalline samples over 480 h in anodic polarization show a continuous current decay. Electrochemical impedance spectroscopy allows to identify that the main cause of deactivation is associated with the loss of TiO electrical conductivity, corresponding to a self-passivation mechanism. This is proposed to reflect the effect of OH ions diffusing in the TiO structure in anodic conditions by the electric field. This fact proves that a modification takes place in the defective zone of the layer, blocking the ability to transfer electrical charge through the layer. According to this mechanism, a regeneration of the degradation process is demonstrated possible based on ultraviolet illumination, which contributes to change the occupancy of TiO electronic states and to recover the defective zone's conductivity. These findings confirm the connection between the structural properties of the ALD-deposited polycrystalline layer and the degradation mechanisms and thus highlight main concerns toward fabricating long-lasting metal-oxide protective layers for frontal illuminated photoelectrodes.
Ajuts: European Commission 665919
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1246
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-327
Ministerio de Economía y Competitividad SEV-2017-0706
Ministerio de Economía y Competitividad MAT2014-59961-C2
Ministerio de Economía y Competitividad BES-2015-071618
Ministerio de Economía y Competitividad ENE2017-85087-C3
Ministerio de Economía y Competitividad ENE2016-80788-C5-5-R
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió sotmesa a revisió
Publicat a: ACS applied materials & interfaces, Vol. 11, Issue 33 (August 2019) , p. 29725-29735, ISSN 1944-8252

DOI: 10.1021/acsami.9b05724
PMID: 31347833


Preprint
43 p, 1.6 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2020-03-23, darrera modificació el 2022-09-23



   Favorit i Compartir