A note on a family of non-gravitational central force potentials in dimension one
Álvarez-Ramírez, Martha 
(Universidad Autónoma Metropolitana - Unidad Iztapalapa. Departamento de Matemáticas (México))
Corbera Subirana, Montserrat 
(Universitat de Vic - Universitat Central de Catalunya. Departament de Tecnologies Digitals i de la Informació)
Cors Iglesias, Josep Maria 
(Universitat Politècnica de Catalunya. Departament de Matemàtiques)
García, A. (Universidad Autónoma Metropolitana - Unidad Iztapalapa. Departamento de Matemáticas (México))
Date: |
2017 |
Abstract: |
In this work, we study a one-parameter family of differential equations and the different scenarios that arise with the change of parameter. We remark that these are not bifurcations in the usual sense but a wider phenomenon related with changes of continuity or differentiability. We offer an alternative point of view for the study for the motion of a system of two particles which will always move in some fixed line, we take R for the position space. If we fix the center of mass at the origin, the system reduces to that of a single particle of unit mass in a central force field. We take the potential energy function U(x)= x where x is the position of the single particle and β is some positive real number. |
Note: |
Número d'acord de subvenció MINECO/MTM2013-40998-P |
Rights: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.  |
Language: |
Anglès |
Document: |
article ; recerca ; acceptedVersion |
Subject: |
Singularities ;
Collisions ;
Non-gravitational interactions |
Published in: |
Applied Mathematics Letters, Vol. 74 (December 2017) , p. 74-78, ISSN 1873-5452 |
DOI: 10.1016/j.aml.2017.04.020
The record appears in these collections:
Research literature >
UAB research groups literature >
Research Centres and Groups (scientific output) >
Experimental sciences >
GSD (Dynamical systems)Articles >
Research articlesArticles >
Published articles
Record created 2020-04-15, last modified 2020-08-30