Google Scholar: cites
Neutron Activated 153Sm Sealed in Carbon Nanocapsules for in Vivo Imaging and Tumor Radiotherapy
Wang, Julie T. W. (King's College London. Institute of Pharmaceutical Science)
Klippstein, Rebecca (King's College London. Institute of Pharmaceutical Science)
Martincic, Markus (Institut de Ciència de Materials de Barcelona)
Pach, Elzbieta (Institut Català de Nanociència i Nanotecnologia)
Feldman, Robert (Cis Bio International Ion Beam Applications SA)
Šefl, Martin (Czech Technical University in Prague)
Michel, Yves (Cis Bio International Ion Beam Applications SA)
Asker, Daniel (King's College London. Institute of Pharmaceutical Science)
Sosabowski, Jane K. (Queen Mary University of London)
Kalbáč, Martin (J. Heyrovsky Institute of the Physical Chemistry)
Da Ros, Tatiana (University of Trieste. Department of Chemical and Pharmaceutical Sciences)
Ménard Moyon, Cécilia (Université de Strasbourg. Centre national de la recherche scientifique)
Bianco, Alberto (Université de Strasbourg. Centre national de la recherche scientifique)
Kyriakou, Ioanna (University of Ioannina Medical School)
Emfietzoglou, Dimitris (University of Ioannina Medical School)
Saccavini, Jean-Claude (Cis Bio International Ion Beam Applications SA)
Ballesteros, Belén (Institut Català de Nanociència i Nanotecnologia)
Al-Jamal, Khuloud T. (King's College London. Institute of Pharmaceutical Science)
Tobias, Gerard (Institut de Ciència de Materials de Barcelona)

Data: 2020
Resum: Radiation therapy along with chemotherapy and surgery remain the main cancer treatments. Radiotherapy can be applied to patients externally (external beam radiotherapy) or internally (brachytherapy and radioisotope therapy). Previously, nanoencapsulation of radioactive crystals within carbon nanotubes, followed by end-closing, resulted in the formation of nanocapsules that allowed ultrasensitive imaging in healthy mice. Herein we report on the preparation of nanocapsules initially sealing "cold" isotopically enriched samarium (Sm), which can then be activated on demand to their "hot" radioactive form (Sm) by neutron irradiation. The use of "cold" isotopes avoids the need for radioactive facilities during the preparation of the nanocapsules, reduces radiation exposure to personnel, prevents the generation of nuclear waste, and evades the time constraints imposed by the decay of radionuclides. A very high specific radioactivity is achieved by neutron irradiation (up to 11. 37 GBq/mg), making the "hot" nanocapsules useful not only for in vivo imaging but also therapeutically effective against lung cancer metastases after intravenous injection. The high in vivo stability of the radioactive payload, selective toxicity to cancerous tissues, and the elegant preparation method offer a paradigm for application of nanomaterials in radiotherapy.
Nota: Número d'acord de subvenció EC/FP7/290023
Nota: Número d'acord de subvenció AGAUR/2017/SGR-581
Nota: Número d'acord de subvenció MINECO/SEV-2015-0496
Nota: Número d'acord de subvenció MINECO/SEV-2017-0706
Drets: Tots els drets reservats.
Llengua: Anglès.
Document: article ; recerca ; acceptedVersion
Matèria: Cancer therapy ; Nuclear imaging ; Nanoencapsulation ; Filled carbon nanotubes ; Radiooncology ; Nanooncology
Publicat a: ACS nano, Vol. 14, Issue 1 (January 2020) , p. 129-141, ISSN 1936-086X

DOI: 10.1021/acsnano.9b04898


Disponible a partir de: 2021-01-31
Postprint

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2020-05-15, darrera modificació el 2020-05-20



   Favorit i Compartir