Google Scholar: citas
Neutron Activated 153Sm Sealed in Carbon Nanocapsules for in Vivo Imaging and Tumor Radiotherapy
Wang, Julie T. W. (King's College London. Institute of Pharmaceutical Science)
Klippstein, Rebecca (King's College London. Institute of Pharmaceutical Science)
Martincic, Markus (Institut de Ciència de Materials de Barcelona)
Pach, Elzbieta (Institut Català de Nanociència i Nanotecnologia)
Feldman, Robert (Cis Bio International Ion Beam Applications SA)
Šefl, Martin (Czech Technical University in Prague)
Michel, Yves (Cis Bio International Ion Beam Applications SA)
Asker, Daniel (King's College London. Institute of Pharmaceutical Science)
Sosabowski, Jane K. (Queen Mary University of London)
Kalbáč, Martin (J. Heyrovsky Institute of the Physical Chemistry)
Da Ros, Tatiana (University of Trieste. Department of Chemical and Pharmaceutical Sciences)
Ménard-Moyon, Cécilia (Centre National de la Recherche Scientifique (França))
Bianco, Alberto (Centre National de la Recherche Scientifique (França))
Kyriakou, Ioanna (University of Ioannina Medical School)
Emfietzoglou, Dimitris (University of Ioannina Medical School)
Saccavini, Jean-Claude (Cis Bio International Ion Beam Applications SA)
Ballesteros, Belén (Institut Català de Nanociència i Nanotecnologia)
Al-Jamal, Khuloud T. (King's College London. Institute of Pharmaceutical Science)
Tobias, Gerard (Institut de Ciència de Materials de Barcelona)

Fecha: 2020
Resumen: Radiation therapy along with chemotherapy and surgery remain the main cancer treatments. Radiotherapy can be applied to patients externally (external beam radiotherapy) or internally (brachytherapy and radioisotope therapy). Previously, nanoencapsulation of radioactive crystals within carbon nanotubes, followed by end-closing, resulted in the formation of nanocapsules that allowed ultrasensitive imaging in healthy mice. Herein we report on the preparation of nanocapsules initially sealing "cold" isotopically enriched samarium (Sm), which can then be activated on demand to their "hot" radioactive form (Sm) by neutron irradiation. The use of "cold" isotopes avoids the need for radioactive facilities during the preparation of the nanocapsules, reduces radiation exposure to personnel, prevents the generation of nuclear waste, and evades the time constraints imposed by the decay of radionuclides. A very high specific radioactivity is achieved by neutron irradiation (up to 11. 37 GBq/mg), making the "hot" nanocapsules useful not only for in vivo imaging but also therapeutically effective against lung cancer metastases after intravenous injection. The high in vivo stability of the radioactive payload, selective toxicity to cancerous tissues, and the elegant preparation method offer a paradigm for application of nanomaterials in radiotherapy.
Ayudas: European Commission 290023
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-581
Ministerio de Economía y Competitividad SEV-2015-0496
Ministerio de Economía y Competitividad SEV-2017-0706
Derechos: Tots els drets reservats.
Lengua: Anglès
Documento: Article ; recerca ; Versió acceptada per publicar
Materia: Cancer therapy ; Nuclear imaging ; Nanoencapsulation ; Filled carbon nanotubes ; Radiooncology ; Nanooncology
Publicado en: ACS nano, Vol. 14, Issue 1 (January 2020) , p. 129-141, ISSN 1936-086X

DOI: 10.1021/acsnano.9b04898


Postprint
59 p, 2.2 MB

El registro aparece en las colecciones:
Documentos de investigación > Documentos de los grupos de investigación de la UAB > Centros y grupos de investigación (producción científica) > Ciencias > Institut Català de Nanociència i Nanotecnologia (ICN2)
Artículos > Artículos de investigación
Artículos > Artículos publicados

 Registro creado el 2020-05-15, última modificación el 2022-09-10



   Favorit i Compartir