Web of Science: 2 citations, Scopus: 3 citations, Google Scholar: citations
A First Evaluation of Thick Oxide 3C-SiC MOS Capacitors Reliability
Li, Fan (University of Warwick)
Mawby, Philip A. (University of Warwick)
Song, Qiu (University of Warwick)
Perez-Tomas, Amador (Institut Català de Nanociència i Nanotecnologia)
Shah, Vishal (University of Warwick)
Sharma, Yogesh (Dynex Semiconductor Ltd.)
Hamilton, Dean P. (De Montfort University)
Fisher, Craig (University of Warwick)
Gammon, Peter (University of Warwick)
Jennings, M.R. (Swansea University)

Date: 2020
Abstract: Despite the recent advances in 3C-SiC technology, there is a lack of statistical analysis on the reliability of SiO layers on 3C-SiC, which is crucial in power MOS device developments. This article presents a comprehensive study of the medium-and long-term time-dependent dielectric breakdowns (TDDBs) of 65-nm-thick SiO layers thermally grown on a state-of-the-art 3C-SiC/Si wafer. Fowler-Nordheim (F-N) tunneling is observed above 7 MV/cm and an effective barrier height of 3. 7 eV is obtained, which is the highest known for native SiO layers grown on the semiconductor substrate. The observed dependence of the oxide reliability on the gate active area suggests that the oxide quality has not reached the intrinsic level. Three failure mechanisms were identified and confirmed by both medium-and long-term results. Although two of them are likely due to extrinsic defects from material quality and fabrication steps, the one dominating the high field (>8. 5 MV/cm) should be attributed to the electron impact ionization within SiO. At room temperature, the field acceleration factor is found to be ≈0. 906 dec/(MV/cm) for high fields, and the projected lifetime exceeds 10 years at 4. 5 MV/cm.
Note: Número d'acord de subvenció EC/H2020/720827
Rights: Tots els drets reservats.
Language: Anglès
Document: article ; recerca ; submittedVersion
Subject: Logic gates ; Silicon ; Reliability ; Dielectrics ; MOSFET ; Annealing ; Substrates
Published in: IEEE transactions on electron devices, Vol. 67, Issue 1 (January 2020) , p. 237-242, ISSN 1557-9646

DOI: 10.1109/TED.2019.2954911


Preprint
7 p, 2.6 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (scientific output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2020-05-15, last modified 2021-01-19



   Favorit i Compartir