Google Scholar: citations
Limit cycles bifurcating from a family of reversible quadratic centers via averaging theory
Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Nabavi, Arefeh (Isfahan University of Technology. Department of Mathematical Sciences (Iran))
Mousavi, Marzieh (Isfahan University of Technology. Department of Mathematical Sciences (Iran))

Date: 2020
Abstract: Consider the class of reversible quadratic systems x· = y, y· = -x + x²+ y² - r², with r > 0. These quadratic polynomial differential systems have a center at the point ((1 -√(1+4r²)/2, 0) and the circle x² + y² = r² is one of the periodic orbits surrounding this center. These systems can be written into the form x· = y + (4 + A)x² - Ay², y· = -x, with A ϵ (-2, 0). For all A ϵ R we prove that the averaging theory up to seventh order applied to this last system perturbed inside the whole class of quadratic polynomial differential systems can produce at most two limit cycles bifurcating from the periodic orbits surrounding the center (0,0) of that system. Up to now this result was only known for A = -2 (see [22, 23]).
Grants: Ministerio de Economía y Competitividad MTM2016-77278-P
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1617
European Commission 777911
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Language: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Subject: Limit cycles ; Quadratic reversible centers ; Averaging theory
Published in: International journal of bifurcation and chaos in applied sciences and engineering, Vol. 30, Issue 4 (March 2020) , p. 2050051, ISSN 1793-6551

DOI: 10.1142/S0218127420500510


Postprint
13 p, 297.3 KB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > GSD (Dynamical systems)
Articles > Research articles
Articles > Published articles

 Record created 2020-07-15, last modified 2024-11-17



   Favorit i Compartir