Web of Science: 0 cites, Scopus: 1 cites, Google Scholar: cites
A relation between p-adic L-functions and the Tamagawa number conjecture for Hecke characters
Bars Cortina, Francesc (Universitat Autònoma de Barcelona. Departament de Matemàtiques)

Data: 2004
Resum: We prove that the submodule in K-theory which gives the exact value (up to Z*(p)) of the L-function by the Beilinson regulator map at non-critical values for Hecke characters of imaginary quadratic fields K with cl(K) = 1(p-local Tamagawa number conjecture) satisfies that the length of its coimage under the local Soulé regulator map is the p-adic valuation of certain special values of p-adic L-functions associated to the Hecke characters. This result yields immediately, up to Jannsen's conjecture, an upper bound for #Het2 (Ok [1/S], Vp(m)) in terms of the valuation of these p-adic L-functions, where Vp denotes the p-adic realization of a Hecke motive.
Nota: Altres ajuts: DGI/BHA2000-0180
Drets: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Llengua: Anglès
Document: Article ; recerca ; Versió sotmesa a revisió
Publicat a: Archiv der Mathematik, Vol. 83, Issue 4 (October 2004) , p. 317-327, ISSN 1420-8938

DOI: 10.1007/s00013-004-1148-2


Preprint
11 p, 368.0 KB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2021-05-20, darrera modificació el 2025-10-15



   Favorit i Compartir