Geometry of certain foliations on the complex projective plane
Marín Pérez, David (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Bedrouni, Samir (University Of Science And Technology Houari Boumediene)

Data: 2022
Descripció: 27 pàg.
Resum: Let d≥2 be an integer. The set F(d) of foliations of degree d on the complex projective plane can be identified with a Zariski's open set of a projective space of dimension d2+4d+2 on which Aut(P2C) acts. We show that there are exactly two orbits O(Fd1) and O(Fd2) of minimal dimension 6 , necessarily closed in F(d) . This generalizes known results in degrees 2 and 3. We deduce that an orbit O(F) of an element F∈F(d) of dimension 7 is closed in F(d) if and only if Fdi∉O(F)¯¯¯¯¯¯¯¯¯¯¯¯ for i=1,2. This allows us to show that in any degree d≥3 there are closed orbits in F(d) other than the orbits O(Fd1) and O(Fd2), unlike the situation in degree 2. On the other hand, we introduce the notion of the basin of attraction B(F) of a foliation F∈F(d) as the set of G∈F(d) such that F∈O(G)¯¯¯¯¯¯¯¯¯¯¯. We show that the basin of attraction B(Fd1) , resp. B(Fd2) , contains a quasi-projective subvariety of F(d) of dimension greater than or equal to dimF(d)−(d−1) , resp. dimF(d)−(d−3) . In particular, we obtain that the basin B(F32) contains a non-empty Zariski open subset of F(3) . This is an analog in degree 3 of a result on foliations of degree 2 due to Cerveau, Déserti, Garba Belko and Meziani.
Ajuts: Agencia Estatal de Investigación CEX2020-001084-M
Agencia Estatal de Investigación PGC2018-095998-B-I00
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1725
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Matèria: Foliation ; Singularity ; Inflection point ; Orbit ; Isotropy group
Publicat a: Annali della Scuola normale superiore di Pisa - Classe di scienze, 2022, ISSN 0391-173X

28 p, 542.2 KB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2022-09-09, darrera modificació el 2022-10-30

   Favorit i Compartir