Scopus: 0 cites, Google Scholar: cites
Machine Learning Models for Predicting Personalized Tacrolimus Stable Dosages in Pediatric Renal Transplant Patients
Sánchez-Herrero, Sergio (Universitat Oberta de Catalunya. Departament d'Informàtica, Multimèdia i Telecomunicació.)
Calvet Liñan, Laura (Universitat Autònoma de Barcelona. Departament de Telecomunicació i Enginyeria de Sistemes)
Juan, Ángel A (Universitat Politècnica de València. Centre de Recerca en Gestió i Enginyeria de la Producció)

Data: 2023
Resum: Tacrolimus, characterized by a narrow therapeutic index, significant toxicity, adverse effects, and interindividual variability, necessitates frequent therapeutic drug monitoring and dose adjustments in renal transplant recipients. This study aimed to compare machine learning (ML) models utilizing pharmacokinetic data to predict tacrolimus blood concentration. This prediction underpins crucial dose adjustments, emphasizing patient safety. The investigation focuses on a pediatric cohort. A subset served as the derivation cohort, creating the dose-prediction algorithm, while the remaining data formed the validation cohort. The study employed various ML models, including artificial neural network, RandomForestRegressor, LGBMRegressor, XGBRegressor, AdaBoostRegressor, BaggingRegressor, ExtraTreesRegressor, KNeighborsRegressor, and support vector regression, and their performances were compared. Although all models yielded favorable fit outcomes, the ExtraTreesRegressor (ETR) exhibited superior performance. It achieved measures of (Formula presented. ) for MPE, (Formula presented. ) for AFE, (Formula presented. ) for AAFE, and (Formula presented. ) for R, indicating accurate predictions and meeting regulatory standards. The findings underscore ML's predictive potential, despite the limited number of samples available. To address this issue, resampling was utilized, offering a viable solution within medical datasets for developing this pioneering study to predict tacrolimus trough concentration in pediatric transplant recipients.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Machine learning ; Pharmacokinetics ; Therapeutic drug monitoring ; Modeling ; Personalized medicine
Publicat a: BioMedInformatics, Vol. 3, Issue 4 (December 2023) , p. 926-947, ISSN 2673-7426

DOI: 10.3390/biomedinformatics3040057


22 p, 4.5 MB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2024-01-31, darrera modificació el 2024-05-06



   Favorit i Compartir