Web of Science: 2 cites, Scopus: 3 cites, Google Scholar: cites
Low disorder and high valley splitting in silicon
Degli Esposti, Davide (Delft University of Technology. QuTech and Kavli Institute of Nanoscience)
Stehouwer, Lucas E.A. (QuTech and Kavli Institute of Nanoscience. Delft University of Technology)
Gül, Önder (QuTech and Netherlands Organisation for Applied Scientific Research)
Samkharadze, Nodar (QuTech and Netherlands Organisation for Applied Scientific Research)
Déprez, Corentin (Delft University of Technology. QuTech and Kavli Institute of Nanoscience)
Meyer, Marcel (Delft University of Technology. QuTech and Kavli Institute of Nanoscience)
Meijer, Ilja N. (Delft University of Technology. QuTech and Kavli Institute of Nanoscience)
Tryputen, Larysa (QuTech and Netherlands Organisation for Applied Scientific Research)
Karwal, Saurabh (QuTech and Netherlands Organisation for Applied Scientific Research)
Botifoll, Marc (Institut Català de Nanociència i Nanotecnologia)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Amitonov, Sergey V. (QuTech and Netherlands Organisation for Applied Scientific Research)
Vandersypen, Lieven M. K (Delft University of Technology. QuTech and Kavli Institute of Nanoscience)
Sammak, Amir (QuTech and Netherlands Organisation for Applied Scientific Research)
Veldhorst, Menno (Delft University of Technology. QuTech and Kavli Institute of Nanoscience)
Scappucci, Giordano (Delft University of Technology. QuTech and Kavli Institute of Nanoscience)

Data: 2024
Resum: The electrical characterisation of classical and quantum devices is a critical step in the development cycle of heterogeneous material stacks for semiconductor spin qubits. In the case of silicon, properties such as disorder and energy separation of conduction band valleys are commonly investigated individually upon modifications in selected parameters of the material stack. However, this reductionist approach fails to consider the interdependence between different structural and electronic properties at the danger of optimising one metric at the expense of the others. Here, we achieve a significant improvement in both disorder and valley splitting by taking a co-design approach to the material stack. We demonstrate isotopically purified, strained quantum wells with high mobility of 3. 14(8) × 10 cm V s and low percolation density of 6. 9(1) × 10 cm. These low disorder quantum wells support quantum dots with low charge noise of 0. 9(3) μeV Hz and large mean valley splitting energy of 0. 24(7) meV, measured in qubit devices. By striking the delicate balance between disorder, charge noise, and valley splitting, these findings provide a benchmark for silicon as a host semiconductor for quantum dot qubits. We foresee the application of these heterostructures in larger, high-performance quantum processors.
Ajuts: European Commission 951852
Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00457
Agencia Estatal de Investigación CEX2021-001214-S
Agència de Gestió d'Ajuts Universitaris i de Recerca 2020/FI-00103
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Charge noise ; Critical steps ; Development cycle ; Electrical characterization ; Energy separations ; Heterogeneous materials ; Property ; Quantum device ; Spin qubit ; Valley splitting
Publicat a: npj Quantum Information, Vol. 10 (March 2024) , art. 32, ISSN 2056-6387

DOI: 10.1038/s41534-024-00826-9


9 p, 2.6 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2024-06-07, darrera modificació el 2024-06-28



   Favorit i Compartir