Google Scholar: cites
A decision support system based on artificial intelligence and systems biology for the simulation of pancreatic cancer patient status
Junet, Valentin (Universitat Autònoma de Barcelona. Institut de Biotecnologia i de Biomedicina "Vicent Villar Palasí")
Matos-Filipe, Pedro (Universitat Pompeu Fabra. Departament de Ciències Experimentals i de la Salut)
García-Illarramendi, Juan Manuel (Universitat Autònoma de Barcelona. Institut de Biotecnologia i de Biomedicina "Vicent Villar Palasí")
Ramírez, Esther (Iteraset Solutions SL)
Oliva Miguel, Baldomero (Universitat Pompeu Fabra. Departament de Ciències Experimentals i de la Salut)
Farrés, Judith (Anaxomics Biotech SL)
Daura i Ribera, Xavier (Universitat Autònoma de Barcelona. Institut de Biotecnologia i de Biomedicina "Vicent Villar Palasí")
Mas, José Manuel (Anaxomics Biotech SL)
Morales, Rafael (Hospital La Mancha Centro)

Data: 2023
Resum: Oncology treatments require continuous individual adjustment based on the measurement of multiple clinical parameters. Prediction tools exploiting the patterns present in the clinical data could be used to assist decision making and ease the burden associated to the interpretation of all these parameters. The goal of this study was to predict the evolution of patients with pancreatic cancer at their next visit using information routinely recorded in health records, providing a decision-support system for clinicians. We selected hematological variables as the visit's clinical outcomes, under the assumption that they can be predictive of the evolution of the patient. Multivariate models based on regression trees were generated to predict next-visit values for each of the clinical outcomes selected, based on the longitudinal clinical data as well as on molecular data sets streaming from in silico simulations of individual patient status at each visit. The models predict, with a mean prediction score (balanced accuracy) of 0. 79, the evolution trends of eosinophils, leukocytes, monocytes, and platelets. Time span between visits and neutropenia were among the most common factors contributing to the predicted evolution. The inclusion of molecular variables from the systems-biology in silico simulations provided a molecular background for the observed variations in the selected outcome variables, mostly in relation to the regulation of hematopoiesis. In spite of its limitations, this study serves as a proof of concept for the application of next-visit prediction tools in real-world settings, even when available data sets are small.
Ajuts: European Commission 765158
European Commission 860303
European Commission 859962
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Publicat a: CPT: Pharmacometrics & Systems Pharmacology, Vol. 12, Issue 7 (July 2023) , p. 916-928, ISSN 2163-8306

DOI: 10.1002/psp4.12961
PMID: 37002678


13 p, 1.2 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències de la salut i biociències > Institut de Biotecnologia i de Biomedicina (IBB)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2024-07-12, darrera modificació el 2024-10-13



   Favorit i Compartir