Quantifying global soil carbon losses in response to warming
Crowther, Thomas W 
(Netherlands Institute of Ecology)
Todd-Brown, K. E. O. (Pacific Northwest National Laboratory (USA))
Rowe, C. W. (Yale University)
Wieder, W. R. (University of Colorado. Institute of Arctic & Alpine Research)
Carey, J. C. (Marine Biological Laboratory (USA))
Machmuller, M. B. (Colorado State University)
Snoek, B. L. (Wageningen University)
Fang, S. (Chinese Academy of Meteorological Sciences)
Zhou, G. (Chinese Academy of Meteorological Sciences)
Allison, S. D. (University of California. Department of Ecology & Evolutionary Biology)
Blair, J. M. (Kansas State University)
Bridgham, S. D. (University of Oregon. Institute of Ecology & Evolution)
Burton, A. J. (Michigan Technological University)
Carrillo, Y. (Western Sydney University. Hawkesbury Institute for the Environment)
Reich, P. B. (University of Minnesota. Department of Forest Resources)
Clark, J. S. (Duke University)
Classen, A. T. (University of Copenhagen. The Natural History Museum of Denmark)
Dijkstra, Feike A (The University of Sydney. Centre for Carbon, Water & Food)
Elberling, B.
(University of Copenhagen. Center for Permafrost)
Emmett, B. A. (Environment Centre Wales. Centre for Ecology and Hydrology)
Estiarte, Marc
(Centre de Recerca Ecològica i d'Aplicacions Forestals)
Frey, S. D. (University of New Hampshire. Department of Natural Resources & the Environment)
Guo, J. (Northeast Normal University (China))
Harte, J. (University of California at Berkeley)
Jiang, L. (University of Oklahoma. Department of Microbiology & Plant Biology)
Johnson, B. R. (University of Oregon. Department of Landscape Architecture)
Kröel-Dulay, G. (Magyar Tudomanyos Akademia Centre for Ecological Research. Institute of Ecology & Botany)
Larsen, K. S. (University of Copenhagen. Department of Geosciences & Natural Resource Management)
Laudon, H. (Swedish University of Agricultural Sciences. Department of Forest Ecology & Management)
Lavallee, J. M. (University of Manchester)
Luo, Y. (University of Oklahoma. Department of Microbiology & Plant Biology)
Lupascu, M. (National University of Singapore. Department of Geography)
Ma, L. N. (Chinese Academy of Sciences. Institute of Botany)
Marhan, S. (University of Hohenheim. Institute of Soil Science & Land Evaluation)
Michelsen, A. (University of Copenhagen. Center for Permafrost)
Mohan, J. (University of Georgia)
Niu, S. (Chinese Academy of Sciences. Institute of Geographic Sciences and Natural Resources Research)
Pendall, E. (Western Sydney University. Hawkesbury Institute for the Environment)
Peñuelas, Josep
(Centre de Recerca Ecològica i d'Aplicacions Forestals)
Pfeifer-Meister, L. (University of Oregon. Institute of Ecology & Evolution)
Poll, C. (University of Hohenheim. Institute of Soil Science & Land Evaluation)
Reinsch, S. (Environment Centre Wales. Centre for Ecology and Hydrology)
Reynolds, L. L. (University of Oregon. Institute of Ecology & Evolution)
Schmidt, I. K. (University of Copenhagen. Department of Geosciences & Natural Resource Management)
Sistla, S. (Hampshire College)
Sokol, N. W. (Pacific Northwest National Laboratory (USA))
Templer, P. H. (Boston University. Department of Biology)
Treseder, K. K. (University of California. Department of Ecology & Evolutionary Biology)
Welker, J. M. (University of Alaska. Department of Biological Sciences)
Bradford, M. A. (Yale University)
| Data: |
2016 |
| Resum: |
The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming1,2,3,4. Despite evidence that warming enhances carbon fluxes to and from the soil5,6, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period7,8. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change. |
| Drets: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Llengua: |
Anglès |
| Document: |
Article ; recerca ; Versió acceptada per publicar |
| Matèria: |
Biogeochemistry ;
Carbon cycle |
| Publicat a: |
Nature, Vol. 540 (November 2016) , p. 104-108, ISSN 1476-4687 |
DOI: 10.1038/nature20150
El registre apareix a les col·leccions:
Documents de recerca >
Documents dels grups de recerca de la UAB >
Centres i grups de recerca (producció científica) >
Ciències >
CREAF (Centre de Recerca Ecològica i d'Aplicacions Forestals)Articles >
Articles de recercaArticles >
Articles publicats
Registre creat el 2024-08-22, darrera modificació el 2025-04-01