Google Scholar: cites
WFA-GPU: Gap-affine pairwise read-alignment using GPUs
Aguado-Puig, Quim (Universitat Autònoma de Barcelona. Departament d'Arquitectura de Computadors i Sistemes Operatius)
Doblas, Max (Barcelona Supercomputing Center)
Matzoros, Christos (Barcelona Supercomputing Center)
Espinosa, Antonio (Universitat Autònoma de Barcelona. Departament d'Arquitectura de Computadors i Sistemes Operatius)
Moure, Juan C. (Universitat Autònoma de Barcelona. Departament d'Arquitectura de Computadors i Sistemes Operatius)
Marco-Sola, Santiago (Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors)
Moreto, Miquel (Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors)

Data: 2023
Resum: Advances in genomics and sequencing technologies demand faster and more scalable analysis methods that can process longer sequences with higher accuracy. However, classical pairwise alignment methods, based on dynamic programming (DP), impose impractical computational requirements to align long and noisy sequences like those produced by PacBio and Nanopore technologies. The recently proposed wavefront alignment (WFA) algorithm paves the way for more efficient alignment tools, improving time and memory complexity over previous methods. However, high-performance computing (HPC) platforms require efficient parallel algorithms and tools to exploit the computing resources available on modern accelerator-based architectures. This paper presents WFA-GPU, a GPU (graphics processing unit)-accelerated tool to compute exact gap-affine alignments based on the WFA algorithm. We present the algorithmic adaptations and performance optimizations that allow exploiting the massively parallel capabilities of modern GPU devices to accelerate the alignment computations. In particular, we propose a CPU-GPU co-design capable of performing inter-sequence and intra-sequence parallel sequence alignment, combining a succinct WFA-data representation with an efficient GPU implementation. As a result, we demonstrate that our implementation outperforms the original multi-threaded WFA implementation by up to 4. 3× and up to 18. 2× when using heuristic methods on long and noisy sequences. Compared to other state-of-the-art tools and libraries, the WFA-GPU is up to 29× faster than other GPU implementations and up to four orders of magnitude faster than other CPU implementations. Furthermore, WFA-GPU is the only GPU solution capable of correctly aligning long reads using a commodity GPU. WFA-GPU code and documentation are publicly available at https://github. com/quim0/WFA-GPU.
Ajuts: Agencia Estatal de Investigación PID2020-113614RB-C21
Ministerio de Economía y Competitividad TIN2015-65316-P
Agencia Estatal de Investigación TED2021-132634A-I00
Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00574
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1328
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-313
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1414
Agencia Estatal de Investigación RYC-2016-21104
Agencia Estatal de Investigación IJC2020-045916-I
Ministerio de Ciencia e Innovación PRE2021-101059
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Publicat a: Bioinformatics, Vol. 39, Issue 12 (December 2023) , art. btad701, ISSN 1367-4811

DOI: 10.1093/bioinformatics/btad701
PMID: 37975878


10 p, 926.8 KB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2025-01-14, darrera modificació el 2025-12-16



   Favorit i Compartir