Artificial Intelligence : A Novel Approach for Drug Discovery
Díaz Sanzo, Óscar 
(Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí (I3PT))
Dalton, James A. R 
(Universitat Autònoma de Barcelona. Institut de Neurociències)
Giraldo, Jesús 
(Universitat Autònoma de Barcelona. Institut de Neurociències)
| Date: |
2019 |
| Abstract: |
Molecular dynamics (MD) simulations can mechanistically explain receptor function. However, the enormous data sets that they may imply can be a hurdle. Plante and colleagues (Molecules, 2019) recently described a machine learning approach to the analysis of MD simulations. The approach successfully classified ligands and identified functional receptor motifs and thus it seems promising for mechanism-based drug discovery. |
| Grants: |
Agencia Estatal de Investigación SAF2017-87199-R
|
| Rights: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió acceptada per publicar |
| Subject: |
GPCR ;
Machine learning ;
Agonist ;
Drug design ;
Biased signaling ;
Molecular dynamics |
| Published in: |
Trends in Pharmacological Sciences, Vol. 40, Núm. 8 (August 2019) , p. 550-551, ISSN 1873-3735 |
DOI: 10.1016/j.tips.2019.06.005
The record appears in these collections:
Research literature >
UAB research groups literature >
Research Centres and Groups (research output) >
Health sciences and biosciences >
Parc Taulí Research and Innovation Institute (I3PTResearch literature >
UAB research groups literature >
Research Centres and Groups (research output) >
Health sciences and biosciences >
Institut de Neurociències (INc)Articles >
Research articlesArticles >
Published articles
Record created 2025-01-23, last modified 2025-06-14