Poincaré compactification for n-dimensional piecewise polynomial vector fields : Theory and applications
Li, Shimin 
(Hangzhou Normal University. Department of Mathematics)
Llibre, Jaume 
(Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Tong, Qian (Hangzhou Normal University. Department of Mathematics)
| Data: |
2024 |
| Resum: |
Poincaré compactification is very important to investigate the dynamics of vector fields in the neighborhood of the infinity, which is the main concern on the escape of particles to infinity in celestial mechanics, astrophysics, astronomy and some branches of chemistry. Since then Poincaré compactification has been extended into various cases, such as: n-dimensional polynomial vector fields, Hamiltonian vector fields, quasi-homogeneous vector fields, rational vector fields, etc. In recent years, the piecewise smooth vector fields describing situations with discontinuities such as switching, decisions, impacts etc. , have been attracted more and more attention. It is worth to notice that Poincaré compactification has been extended successfully to piecewise polynomial vector fields in 2-dimensional and 3-dimensional cases, and there are also works on n-dimensional Lipschitz continuous vector fields. The main goal of present paper is to extend the Poincaré compactification to n-dimensional piecewise polynomial vector fields which are usually discontinuous, this is a missing point in the existent literature. Thus we can investigate the dynamics near the infinity of n-dimensional piecewise polynomial vector fields. As an application we study the global phase portraits for a class of 3-dimensional piecewise linear differential systems. |
| Ajuts: |
Agencia Estatal de Investigación PID2022-136613NB-100 Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00113
|
| Drets: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.  |
| Llengua: |
Anglès |
| Document: |
Article ; recerca ; Versió acceptada per publicar |
| Publicat a: |
Topology and its applications, Vol. 358 (December 2024) , art. 109126, ISSN 0166-8641 |
DOI: 10.1016/j.topol.2024.109126
Disponible a partir de: 2026-12-31
Postprint
|
El registre apareix a les col·leccions:
Documents de recerca >
Documents dels grups de recerca de la UAB >
Centres i grups de recerca (producció científica) >
Ciències >
GSD (Grup de sistemes dinàmics)Articles >
Articles de recercaArticles >
Articles publicats
Registre creat el 2025-02-07, darrera modificació el 2025-06-23