|
|
|||||||||||||||
|
Cerca | Lliura | Ajuda | Servei de Biblioteques | Sobre el DDD | Català English Español | |||||||||
| Pàgina inicial > Articles > Articles publicats > Global Crop-Specific Fertilization Dataset from 1961-2019 |
| Data: | 2025 |
| Resum: | As global fertilizer application rates increase, high-quality datasets are paramount for comprehensive analyses to support informed decision-making and policy formulation in crucial areas such as food security or climate change. This study aims to fill existing data gaps by employing two machine learning models, eXtreme Gradient Boosting and HistGradientBoosting algorithms to produce precise country-level predictions of nitrogen (N), phosphorus pentoxide (P2O5), and potassium oxide (K2O) application rates. Subsequently, we created a comprehensive dataset of 5-arcmin resolution maps depicting the application rates of each fertilizer for 13 major crop groups from 1961 to 2019. The predictions were validated by both comparing with existing databases and by assessing the drivers of fertilizer application rates using the model's SHapley Additive exPlanations. This extensive dataset is poised to be a valuable resource for assessing fertilization trends, identifying the socioeconomic, agricultural, and environmental drivers of fertilizer application rates, and serving as an input for various applications, including environmental modeling, causal analysis, fertilizer price predictions, and forecasting. |
| Ajuts: | European Commission 964545 Agencia Estatal de Investigación PID2020-115770RB-I00 Agencia Estatal de Investigación PID2022-140808NB-I00 Agencia Estatal de Investigación TED2021-132627B-I00 Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-1333 Agència de Gestió d'Ajuts Universitaris i de Recerca 2023/SGR-00118 |
| Nota: | Altres ajuts: the Fundación Ramón Areces grant CIVP20A6621 |
| Drets: | Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. |
| Llengua: | Anglès |
| Document: | Article ; recerca ; Versió publicada |
| Publicat a: | Scientific data, Vol. 12 (January 2025) , art. 40, ISSN 2052-4463 |
| Obra relacionada: | Coello, Fernando; Decorte, Thomas; Janssens, Iris; [et al.]. «Author Correction : Global Crop-Specific Fertilization Dataset from 1961-2019». Scientific data, Vol. 12 (February 2025), art. 287 https://doi.org/10.1038/s41597-025-04591-y |
30 p, 9.6 MB |