A machine learning model exploring the relationship between chronic medication and COVID-19 clinical outcomes
Miró, Berta 
(Hospital Universitari Vall d'Hebron. Institut de Recerca)
Díaz González, Natalia (Hospital Universitari Vall d'Hebron. Institut de Recerca)
Martínez-Cerdá, Juan-Francisco 
(Agència de Qualitat i Avaluació Sanitàries de Catalunya)
Viñas-Bardolet, Clara 
(Agència de Qualitat i Avaluació Sanitàries de Catalunya)
Sánchez, Alex 
(Universitat de Barcelona. Departament de Genètica, Microbiologia i Estadística)
Sánchez-Montalvá, Adrián 
(Universitat Autònoma de Barcelona. Departament de Medicina)
Miarons, Marta
(Hospital Universitari Vall d'Hebron)
| Data: |
2025 |
| Resum: |
Background: The impact of chronic medication on COVID-19 outcomes has been a topic of ongoing debate since the onset of the pandemic. Investigating how specific long-term treatments influence infection severity and prognosis is essential for optimising patient management and care. Aim: This study aimed to investigate the association between chronic medication and COVID-19 outcomes, using machine learning to identify key medication-related factors. Method: We analysed 137,835 COVID-19 patients in Catalonia (February-September 2020) using eXtreme Gradient Boosting to predict hospitalisation, ICU admission, and mortality. This was complemented by univariate logistic regression analyses and a sensitivity analysis focusing on diabetes, hypertension, and lipid disorders. Results: Participants had a mean age of 53 (SD 20) years, with 57% female. The best model predicted mortality risk in 18 to 65-year-olds (AUCROC 0. 89, CI 0. 85-0. 92). Key features identified included the number of prescribed drugs, systemic corticoids, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, and hypertension drugs. A sensitivity analysis identified that hypertensive participants over 65 taking angiotensin-converting enzyme (ACE) inhibitors or angiotensin II receptor blockers (ARBs) had lower mortality risk (OR 0. 78 CI 0. 68-0. 92) compared to those on other antihypertensive medication (OR 0. 8 CI 0. 68-0. 95). Treatment with inhibitors of dipeptidyl peptidase 4 was associated to higher mortality in participants aged 18-65, while metformin showed a protective effect in those over 65 (OR 0. 79, 95% CI 0. 68-0. 92). Conclusion: Machine learning models effectively distinguished COVID-19 outcomes. Patients under ACEi or ARBs or biguanides should continue their prescribed medications, which may offer protection over alternative treatments. |
| Nota: |
Altres ajuts: acords transformatius de la UAB |
| Drets: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original.  |
| Llengua: |
Anglès |
| Document: |
Article ; recerca ; Versió publicada |
| Matèria: |
ACE inhibitors ;
ARBs ;
COVID-19 ;
HMG-CoA reductase ;
Machine learning ;
Metformin ;
Mortality ;
Polypharmacy ;
Prediction models |
| Publicat a: |
International Journal of Clinical Pharmacy, Vol. 47, Núm. 4 (August 2025) , p. 1075-1086, ISSN 2210-7711 |
DOI: 10.1007/s11096-025-01955-7
PMID: 40720062
El registre apareix a les col·leccions:
Articles >
Articles de recercaArticles >
Articles publicats
Registre creat el 2025-08-28, darrera modificació el 2025-09-14